The composition of paper cups creates a challenge for the recycling industry,as the paperboard–plastic film composite is hard to separate.Therefore,paper cups are sent to landfills or waste incinerators.This study ex...The composition of paper cups creates a challenge for the recycling industry,as the paperboard–plastic film composite is hard to separate.Therefore,paper cups are sent to landfills or waste incinerators.This study explores the combined use of red worms(Eisenia fetida)and Greater wax moth(Galleria mellonella)in the biodegradation of paper cups.The study investigates the conditions and combinations that promote using Eisenia fetida and Galleria mellonella for degrading paper cups.The study considered the influence of environmental temperature,the presence of food waste,varying the number of Eisenia fetida worms,and the presence of a Galleria mellonella growth-slowing agent on the degradation process.To achieve the study objectives,the study followed a quantitative approach.The study monitored the degradation of paper cup cuts that were placed in jars containing different combinations of Eisenia fetida worms,Galleria mellonella larvae,food waste,bedding material,and Galleria mellonella growth-slowing agents.The study found that the best operating temperature is 30oC.The study found that using food waste improves the performance of Eisenia fetida worms and Galleria mellonella larvae significantly.The study found that adding a Galleria mellonella growth-slowing agent slightly enhances the degradation of the paper cup.Finally,a numerical model was obtained to simulate the paper cup degradation efficiency.展开更多
The entomopathogenic bacterium, Xenorhabdus nematophila was isolated from the hemolymph of Galleria mel- lonella infected with Steinernema carpocapsae. The bacterial cells and its metabolic secretions have been found ...The entomopathogenic bacterium, Xenorhabdus nematophila was isolated from the hemolymph of Galleria mel- lonella infected with Steinernema carpocapsae. The bacterial cells and its metabolic secretions have been found lethal to the Galleria larvae. Toxic secretion in broth caused 95% mortality within 4 d of application whereas the bacterial cells caused 93% mortality after 6 d. When filter and sand substrates were compared, the later one was observed as appropriate. Similarly, bacterial cells and secretion in broth were more effective at 14% moisture and 25 °C temperature treatments. Maximum insect mortality (100%) was observed when bacterial concentration of 4×106 cells/ml was used. Similarly, maximum bacterial cells in broth (95%) were penetrated into the insect body within 2 h of their application. However, when stored bacterial toxic secretion was applied to the insects its efficacy declined. On the other hand, when the same toxic secretion was dried and then dissolved either in broth or water was proved to be effective. The present study showed that the bacterium, X. nematophila or its toxic secretion can be used as an important component of integrated pest management against Galleria.展开更多
The Phytochemical investigation on MeOH extract on the bark of Aristolochia brasiliensis Mart.&Zucc(Aristolochi-aceae)led to the isolation of major compound(1)as light brown grainy crystals.The compound was identi...The Phytochemical investigation on MeOH extract on the bark of Aristolochia brasiliensis Mart.&Zucc(Aristolochi-aceae)led to the isolation of major compound(1)as light brown grainy crystals.The compound was identified as 1-(4-hydroxybenzyl)-1,2,3,4-tetrahydroisoquinoline-6,7-diol(higenamine)on the basis of spectroscopic analysis,including 1D and 2D NMR spectroscopy.The compound was evaluated for its antimycobacterial activity against Mycobacterium indicus pranii(MIP),using Galleria mellonella larva as an in vivo infection model.The survival of MIP infected larvae after a single dose treatment of 100 mg/kg body weight of higenamine was 80%after 24 h.Quantitatively the compound exhibited a dose dependent activity,as evidenced by the reduction of colony density from 10^(5) to 10^(3) CFU for test concentrations of 50,100,150 and 200 mg/kg body weight respectively.The IC50 value for higenamine was 161.6 mg/kg body weight as calculated from a calibration curve.Further analysis showed that,a complete inhibition of MIP in the G.mellonella could be achieved at 334 mg/kg body weight.Despite the fact that MIP has been found to be highly resistant against isoniazid(INH)in an in vitro assay model,in this study the microbe was highly susceptible to this standard anti-TB drug.The isolation of higenamine from the genus Aristolochia and the method used to evaluate its in vivo antimycobacterial activity in G.mellonella are herein reported for the first time.展开更多
The embryogenesis of lepidopteran insects has morphogenetic events accompanying the blastokinesis movements (anatrepsis and katatrepsis) in early and late stages, respectively. Katatrepsis is related to embryonic move...The embryogenesis of lepidopteran insects has morphogenetic events accompanying the blastokinesis movements (anatrepsis and katatrepsis) in early and late stages, respectively. Katatrepsis is related to embryonic movement with yolk mass and regression of amnioserosa folds in the second half of the development cycle. The whole mount method and differential interference contrast microscopy (DIC) were used for analysing the embryonic developmental changes. Those changes in the middle and late embryonic periods were described and divided into eight stages: 1) Completion of segmentation and differentiation of cephalic and thoracic appendages (32 - 40 hours post-oviposition h. PO);2) Expanded growth of cephalo-gnathal and abdominal parts (41 - 60 h. PO);3) Completion of thoracic appendages and appearance of pleuropodia, katatrepsis (60 - 70 h. PO);4) Pre-revolution morphogenetic movement of the cephalo-gnathal region (71 - 80 h. PO);5) revolution of the embryo (81 - 100 h. PO);6) Beginning of dorsal closure (101 - 115 h. PO);7) completion of dorsal closure (116 - 120 h. PO);and 8) full-grown embryo just before hatching (121 - 144 h. PO).展开更多
Neuropeptides are crucial in regulation of a rich variety of developmental,physiological,and behavioral functions throughout the life cycle of insects.Using an integrated approach of multiomics,we identified neuropept...Neuropeptides are crucial in regulation of a rich variety of developmental,physiological,and behavioral functions throughout the life cycle of insects.Using an integrated approach of multiomics,we identified neuropeptide precursors in the greater wax moth Galleria mellonella,which is a harmful pest of honeybee hives with a worldwide distribution.Here,a total of 63 and 67 neuropeptide precursors were predicted and annotated in the G.mellonella genome and transcriptome,in which 40 neuropeptide precursors were confirmed in the G.mellonella peptidome.Interestingly,we identified 12 neuropeptide precursor genes present in G.mellonella but absent in honeybees,which may be potential novel pesticide target sites.Honeybee hives were contaminated with heavy metals such as lead,enabling its bioaccumulation in G.mellonella bodies through the food chain,we performed transcriptome sequencing to analyze the effects of Pb stress on the mRNA expression level of G.mellonella neuropeptide precursors.After treatment by Pb,the expression of neuropeptide F1 was found to be significantly downregulated,implying that this neuropeptide might be associated with responding to the heavy metal stress in G.mellonella.This study comprehensively identified neuropeptide precursors in G.mellonella,and discussed the effects of heavy metals on insect neuropeptides,with the example of G.mellonella.The results are valuable for future elucidation of how neuropeptides regulate physiological functions in G.mellonella and contribute to our understanding of the insect's environmental plasticity and identify potential new biomarkers to assess heavy metal toxicity in insects.展开更多
Severe infections caused by multidrug-resistant Klebsiella pneumoniae(K.pneumoniae)highlight the need for new therapeutics with activity against this pathogen.Phage therapy is an alternative treatment approach for mul...Severe infections caused by multidrug-resistant Klebsiella pneumoniae(K.pneumoniae)highlight the need for new therapeutics with activity against this pathogen.Phage therapy is an alternative treatment approach for multidrug-resistant K.pneumoniae infections.Here,we report a novel bacteriophage(phage)BUCT631 that can specifically lyse capsule-type K1 K.pneumoniae.Physiological characterization revealed that phage BUCT631 could rapidly adsorb to the surface of K.pneumoniae and form an obvious halo ring,and it had relatively favorable thermal stability(4–50C)and pH tolerance(pH?4–12).In addition,the optimal multiplicity of infection(MOI)of phage BUCT631 was 0.01,and the burst size was approximately 303 PFU/cell.Genomic analysis showed that phage BUCT631 has double-stranded DNA(total length of 44,812 bp)with a G t C content of 54.1%,and the genome contains 57 open reading frames(ORFs)and no virulence or antibiotic resistance related genes.Based on phylogenetic analysis,phage BUCT631 could be assigned to a new species in the genus Drulisvirus of the subfamily Slopekvirinae.In addition,phage BUCT631 could quickly inhibit the growth of K.pneumoniae within 2 h in vitro and significantly elevated the survival rate of K.pneumoniae infected Galleria mellonella larvae from 10%to 90%in vivo.These studies suggest that phage BUCT631 has promising potential for development as a safe alternative for control and treatment of multidrug-resistant K.pneumoniae infection.展开更多
Females of the ectoparasitoid Habrobracon hebetor attack and envenomate numerous host individuals during oviposition. The vectoring of the entomopathogenic fungus Beauveria bassiana during the adhesion stage by ectopa...Females of the ectoparasitoid Habrobracon hebetor attack and envenomate numerous host individuals during oviposition. The vectoring of the entomopathogenic fungus Beauveria bassiana during the adhesion stage by ectoparasitoid females among the wax moth larvae Galleria mellonella was explored under laboratory conditions. Vectoring occurred both from infected parasitoids to wax moth larvae and from infected to healthy wax moth larvae by parasitoids. The efficacy of vectoring in both cases was dose dependent. Parasitoid females were unable to recognize infected larvae in a labyrinth test. In addition, the presence of H. hebetor females significantly (1.5-13 fold) increased the mycoses level in clusters of G. mellonella, with 40% of the larvae infected with ftmgal conidia. Envenomation by H. hebetor increased conidia germination on the cuticles of the wax moth larvae by 4.4 fold. An enhanced germination rate (2 fold) was registered in the n- hexane epicuticular extract of envenomated larvae compared to that of healthy larvae. Both envenomation and mycoses enhanced the phenoloxidase (PO) activity in the integument of G. mellonella and, in contrast, decreased the encapsulation rate in hemolymphs. We hypothesize that changes in the integument property and inhibition of cellular immunity provide the highest infection efficacy of entomopathogenic fungi with H. hebetor.展开更多
The resources available to an individual in any given environment are finite, and variation in life history traits reflect differential allocation of these resources to competing life functions. Nutritional quality of...The resources available to an individual in any given environment are finite, and variation in life history traits reflect differential allocation of these resources to competing life functions. Nutritional quality of food is of particular importance in these life history decisions. In this study, we tested trade-offs among growth, immunity and survival in 3 groups of greater wax moth (Galleria mellonella) larvae fed on diets of high and average nutritional quality. We found rapid growth and weak immunity (as measured by encapsulation response) in the larvae of the high-energy food group. It took longer to develop on food of average nutritional quality. However, encapsulation response was stronger in this group. The larvae grew longer in the low-energy food group, and had the strongest encapsulation response. We observed the highest survival rates in larvae of the low-energy food group, while the highest mortality rates were observed in the high-energy food group. A significant negative correlation between body mass and the strength of encapsulation response was found only in the high-energy food group revealing significant competition between growth and immunity only at the highest rates of growth. The results of this study help to establish relationships between types of food, its nutritional value and life history traits of G. mellonella larvae.展开更多
Investigation of insect immune mechanisms provides important information concerning innate immunity, which in many aspects is conserved in animals. This is one of the reasons why insects serve as model organisms to st...Investigation of insect immune mechanisms provides important information concerning innate immunity, which in many aspects is conserved in animals. This is one of the reasons why insects serve as model organisms to study virulence mechanisms of human pathogens. From the evolutionary point of view, we also learn a lot about host-pathogen interaction and adaptation of organisms to conditions of life. Additionally, insect-derived antibacterial and antifungal peptides and proteins are considered for their potential to be applied as alternatives to antibiotics. While Drosophila melanogaster is used to study the genetic aspect of insect immunity, Galleria mellonella serves as a good model for biochemical research. Given the size of the insect, it is possible to obtain easily hemolymph and other tissues as a source of many immune-relevant polypeptides. This review article summarizes our knowledge concerning G. mellonella immunity. The best-characterized immune-related proteins and peptides are recalled and their short characteristic is given. Some other proteins identified at the mRNA level are also mentioned. The infectious routes used by Galleria natural pathogens such as Bacillus thuringiensis and Beauveria bassiana are also described in the context of host-pathogen interaction. Finally, the plasticity of G. mellonella immune response influenced by abiotic and biotic factors is described.展开更多
基金funded by the Deanship of Scientific Research at the University of Jordan.
文摘The composition of paper cups creates a challenge for the recycling industry,as the paperboard–plastic film composite is hard to separate.Therefore,paper cups are sent to landfills or waste incinerators.This study explores the combined use of red worms(Eisenia fetida)and Greater wax moth(Galleria mellonella)in the biodegradation of paper cups.The study investigates the conditions and combinations that promote using Eisenia fetida and Galleria mellonella for degrading paper cups.The study considered the influence of environmental temperature,the presence of food waste,varying the number of Eisenia fetida worms,and the presence of a Galleria mellonella growth-slowing agent on the degradation process.To achieve the study objectives,the study followed a quantitative approach.The study monitored the degradation of paper cup cuts that were placed in jars containing different combinations of Eisenia fetida worms,Galleria mellonella larvae,food waste,bedding material,and Galleria mellonella growth-slowing agents.The study found that the best operating temperature is 30oC.The study found that using food waste improves the performance of Eisenia fetida worms and Galleria mellonella larvae significantly.The study found that adding a Galleria mellonella growth-slowing agent slightly enhances the degradation of the paper cup.Finally,a numerical model was obtained to simulate the paper cup degradation efficiency.
文摘The entomopathogenic bacterium, Xenorhabdus nematophila was isolated from the hemolymph of Galleria mel- lonella infected with Steinernema carpocapsae. The bacterial cells and its metabolic secretions have been found lethal to the Galleria larvae. Toxic secretion in broth caused 95% mortality within 4 d of application whereas the bacterial cells caused 93% mortality after 6 d. When filter and sand substrates were compared, the later one was observed as appropriate. Similarly, bacterial cells and secretion in broth were more effective at 14% moisture and 25 °C temperature treatments. Maximum insect mortality (100%) was observed when bacterial concentration of 4×106 cells/ml was used. Similarly, maximum bacterial cells in broth (95%) were penetrated into the insect body within 2 h of their application. However, when stored bacterial toxic secretion was applied to the insects its efficacy declined. On the other hand, when the same toxic secretion was dried and then dissolved either in broth or water was proved to be effective. The present study showed that the bacterium, X. nematophila or its toxic secretion can be used as an important component of integrated pest management against Galleria.
基金supported by the International Foundation for Science(IFS)Grant Number J/4894-2.
文摘The Phytochemical investigation on MeOH extract on the bark of Aristolochia brasiliensis Mart.&Zucc(Aristolochi-aceae)led to the isolation of major compound(1)as light brown grainy crystals.The compound was identified as 1-(4-hydroxybenzyl)-1,2,3,4-tetrahydroisoquinoline-6,7-diol(higenamine)on the basis of spectroscopic analysis,including 1D and 2D NMR spectroscopy.The compound was evaluated for its antimycobacterial activity against Mycobacterium indicus pranii(MIP),using Galleria mellonella larva as an in vivo infection model.The survival of MIP infected larvae after a single dose treatment of 100 mg/kg body weight of higenamine was 80%after 24 h.Quantitatively the compound exhibited a dose dependent activity,as evidenced by the reduction of colony density from 10^(5) to 10^(3) CFU for test concentrations of 50,100,150 and 200 mg/kg body weight respectively.The IC50 value for higenamine was 161.6 mg/kg body weight as calculated from a calibration curve.Further analysis showed that,a complete inhibition of MIP in the G.mellonella could be achieved at 334 mg/kg body weight.Despite the fact that MIP has been found to be highly resistant against isoniazid(INH)in an in vitro assay model,in this study the microbe was highly susceptible to this standard anti-TB drug.The isolation of higenamine from the genus Aristolochia and the method used to evaluate its in vivo antimycobacterial activity in G.mellonella are herein reported for the first time.
文摘The embryogenesis of lepidopteran insects has morphogenetic events accompanying the blastokinesis movements (anatrepsis and katatrepsis) in early and late stages, respectively. Katatrepsis is related to embryonic movement with yolk mass and regression of amnioserosa folds in the second half of the development cycle. The whole mount method and differential interference contrast microscopy (DIC) were used for analysing the embryonic developmental changes. Those changes in the middle and late embryonic periods were described and divided into eight stages: 1) Completion of segmentation and differentiation of cephalic and thoracic appendages (32 - 40 hours post-oviposition h. PO);2) Expanded growth of cephalo-gnathal and abdominal parts (41 - 60 h. PO);3) Completion of thoracic appendages and appearance of pleuropodia, katatrepsis (60 - 70 h. PO);4) Pre-revolution morphogenetic movement of the cephalo-gnathal region (71 - 80 h. PO);5) revolution of the embryo (81 - 100 h. PO);6) Beginning of dorsal closure (101 - 115 h. PO);7) completion of dorsal closure (116 - 120 h. PO);and 8) full-grown embryo just before hatching (121 - 144 h. PO).
基金supported in part by the National Natural Science Foundation of China(32202295)Guizhou Provincial Science and Technology Projects(Qian Ke He Ji Chu-ZK[2022]General 051)+1 种基金Scientific Research Foundation for Talent Introduced in Guizhou University(Gui Da Te Gang He Zi[2021]22)Guizhou Provincial Science and Technology Projects(Qian Ke He Support[2019]2292,Qian Ke He NY[2013]3040).
文摘Neuropeptides are crucial in regulation of a rich variety of developmental,physiological,and behavioral functions throughout the life cycle of insects.Using an integrated approach of multiomics,we identified neuropeptide precursors in the greater wax moth Galleria mellonella,which is a harmful pest of honeybee hives with a worldwide distribution.Here,a total of 63 and 67 neuropeptide precursors were predicted and annotated in the G.mellonella genome and transcriptome,in which 40 neuropeptide precursors were confirmed in the G.mellonella peptidome.Interestingly,we identified 12 neuropeptide precursor genes present in G.mellonella but absent in honeybees,which may be potential novel pesticide target sites.Honeybee hives were contaminated with heavy metals such as lead,enabling its bioaccumulation in G.mellonella bodies through the food chain,we performed transcriptome sequencing to analyze the effects of Pb stress on the mRNA expression level of G.mellonella neuropeptide precursors.After treatment by Pb,the expression of neuropeptide F1 was found to be significantly downregulated,implying that this neuropeptide might be associated with responding to the heavy metal stress in G.mellonella.This study comprehensively identified neuropeptide precursors in G.mellonella,and discussed the effects of heavy metals on insect neuropeptides,with the example of G.mellonella.The results are valuable for future elucidation of how neuropeptides regulate physiological functions in G.mellonella and contribute to our understanding of the insect's environmental plasticity and identify potential new biomarkers to assess heavy metal toxicity in insects.
基金This work was supported by the National Key Research and Development Program of China(NO.2018YFA0903000,2020YFC2005405,2020YFA0712100,2020YFC0840805)the Funds for First-class Discipline Construction(NO.XK1805,NO.XK1803-06)the Innovation&Transfer Fund of Peking University Third Hospital BYSYZHKC2022114.
文摘Severe infections caused by multidrug-resistant Klebsiella pneumoniae(K.pneumoniae)highlight the need for new therapeutics with activity against this pathogen.Phage therapy is an alternative treatment approach for multidrug-resistant K.pneumoniae infections.Here,we report a novel bacteriophage(phage)BUCT631 that can specifically lyse capsule-type K1 K.pneumoniae.Physiological characterization revealed that phage BUCT631 could rapidly adsorb to the surface of K.pneumoniae and form an obvious halo ring,and it had relatively favorable thermal stability(4–50C)and pH tolerance(pH?4–12).In addition,the optimal multiplicity of infection(MOI)of phage BUCT631 was 0.01,and the burst size was approximately 303 PFU/cell.Genomic analysis showed that phage BUCT631 has double-stranded DNA(total length of 44,812 bp)with a G t C content of 54.1%,and the genome contains 57 open reading frames(ORFs)and no virulence or antibiotic resistance related genes.Based on phylogenetic analysis,phage BUCT631 could be assigned to a new species in the genus Drulisvirus of the subfamily Slopekvirinae.In addition,phage BUCT631 could quickly inhibit the growth of K.pneumoniae within 2 h in vitro and significantly elevated the survival rate of K.pneumoniae infected Galleria mellonella larvae from 10%to 90%in vivo.These studies suggest that phage BUCT631 has promising potential for development as a safe alternative for control and treatment of multidrug-resistant K.pneumoniae infection.
文摘Females of the ectoparasitoid Habrobracon hebetor attack and envenomate numerous host individuals during oviposition. The vectoring of the entomopathogenic fungus Beauveria bassiana during the adhesion stage by ectoparasitoid females among the wax moth larvae Galleria mellonella was explored under laboratory conditions. Vectoring occurred both from infected parasitoids to wax moth larvae and from infected to healthy wax moth larvae by parasitoids. The efficacy of vectoring in both cases was dose dependent. Parasitoid females were unable to recognize infected larvae in a labyrinth test. In addition, the presence of H. hebetor females significantly (1.5-13 fold) increased the mycoses level in clusters of G. mellonella, with 40% of the larvae infected with ftmgal conidia. Envenomation by H. hebetor increased conidia germination on the cuticles of the wax moth larvae by 4.4 fold. An enhanced germination rate (2 fold) was registered in the n- hexane epicuticular extract of envenomated larvae compared to that of healthy larvae. Both envenomation and mycoses enhanced the phenoloxidase (PO) activity in the integument of G. mellonella and, in contrast, decreased the encapsulation rate in hemolymphs. We hypothesize that changes in the integument property and inhibition of cellular immunity provide the highest infection efficacy of entomopathogenic fungi with H. hebetor.
文摘The resources available to an individual in any given environment are finite, and variation in life history traits reflect differential allocation of these resources to competing life functions. Nutritional quality of food is of particular importance in these life history decisions. In this study, we tested trade-offs among growth, immunity and survival in 3 groups of greater wax moth (Galleria mellonella) larvae fed on diets of high and average nutritional quality. We found rapid growth and weak immunity (as measured by encapsulation response) in the larvae of the high-energy food group. It took longer to develop on food of average nutritional quality. However, encapsulation response was stronger in this group. The larvae grew longer in the low-energy food group, and had the strongest encapsulation response. We observed the highest survival rates in larvae of the low-energy food group, while the highest mortality rates were observed in the high-energy food group. A significant negative correlation between body mass and the strength of encapsulation response was found only in the high-energy food group revealing significant competition between growth and immunity only at the highest rates of growth. The results of this study help to establish relationships between types of food, its nutritional value and life history traits of G. mellonella larvae.
文摘Investigation of insect immune mechanisms provides important information concerning innate immunity, which in many aspects is conserved in animals. This is one of the reasons why insects serve as model organisms to study virulence mechanisms of human pathogens. From the evolutionary point of view, we also learn a lot about host-pathogen interaction and adaptation of organisms to conditions of life. Additionally, insect-derived antibacterial and antifungal peptides and proteins are considered for their potential to be applied as alternatives to antibiotics. While Drosophila melanogaster is used to study the genetic aspect of insect immunity, Galleria mellonella serves as a good model for biochemical research. Given the size of the insect, it is possible to obtain easily hemolymph and other tissues as a source of many immune-relevant polypeptides. This review article summarizes our knowledge concerning G. mellonella immunity. The best-characterized immune-related proteins and peptides are recalled and their short characteristic is given. Some other proteins identified at the mRNA level are also mentioned. The infectious routes used by Galleria natural pathogens such as Bacillus thuringiensis and Beauveria bassiana are also described in the context of host-pathogen interaction. Finally, the plasticity of G. mellonella immune response influenced by abiotic and biotic factors is described.