The continuously collected cores from the Permo-Carboniferous coal-bearing strata of the eastern Ordos Basin are essential for studying the hydrocarbon potential in this region.This study adopted sedimentological and ...The continuously collected cores from the Permo-Carboniferous coal-bearing strata of the eastern Ordos Basin are essential for studying the hydrocarbon potential in this region.This study adopted sedimentological and geochemical methods to analyze the sedimentary environment,material composition,and geochemical characteristics of the coal-bearing strata.The differences in depositional and paleoclimatic conditions were compared;and the factors influencing the organic matter content of fine-grained sediments were explored.The depositional environment of the Benxi and Jinci formations was lagoon to tidal flat with weakly reduced waters with low salinity and dry-hot paleoclimatic conditions;while that of the Taiyuan Formation was a carbonate platform and shallow water delta front,where the water was highly reductive.The xerothermic climate alternated with the warm and humid climate.The period of maximum transgression in the Permo-Carboniferous has the highest water salinity.The Shanxi Formation was deposited in a shallow water delta front with a brackish and fresh water environment and alternative weak reductiveness.And the paleoclimate condition is dry-hot.The TOC content in fine-grained samples was averaging 1.52%.The main controlling mechanism of organic matter in this area was the input conditions according to the analysis on input and preservation of organic matter.展开更多
The Longtan Formation was originally thought to belong to the Late Permian, but this study reveals that the lower part of this formation belongs to the Middle Permian. The study proposes the corresponding chro-nostrat...The Longtan Formation was originally thought to belong to the Late Permian, but this study reveals that the lower part of this formation belongs to the Middle Permian. The study proposes the corresponding chro-nostratigraphic boundary and new schemes for the correlation of geological sections. Based on these schemes a new understanding on the accumulation regularity of Permian coal measures in South China is reached.展开更多
Multiple coal seams and interbedded rock assemblages formed in vertical progression due to the influence of multiple stages of sea level transgressions.Based on mercury injection experiment,low temperature liquid nitr...Multiple coal seams and interbedded rock assemblages formed in vertical progression due to the influence of multiple stages of sea level transgressions.Based on mercury injection experiment,low temperature liquid nitrogen experiment,porosity and permeability experiment and breakthrough pressure experiment,the vertical variation characteristics of coal-bearing strata in Gujiao block are explained in detail.The results of the mercury injection and low temperature liquid nitrogen experiments show that the pore structure characteristics fluctuate with increasing depth in the strata,with fewer micropores followed by transition pores.The BET specific surface area and average pore diameter of the Shanxi Formation are generally larger than those of the Taiyuan Formation.Due to the continuous cyclic sequence stratigraphy changes,the porosity,permeability,breakthrough pressure and breakthrough time of the samples show a certain cyclicity.Within the same sequence,the porosity is larger,and the permeability is smaller near the maximum flooding surface.Although the permeability of the sandstone samples is higher,the porosity is lower,and the breakthrough pressure and breakthrough times are greater.The strata in the study area formed in an oxidized environment that was affected by freshwater,and the pore structure of different lithologies is quite different.After the formation of sandstone,the intergranular pores generally underwent filling with secondary quartz,clay minerals and organic matter,resulting in low porosity and permeability.展开更多
The sharp increase in the demand for lithium(Li)for high-energy-storage battery materials due to its high specific energy and low negative chemical potential render Li a geopolitically significant resource.It is urgen...The sharp increase in the demand for lithium(Li)for high-energy-storage battery materials due to its high specific energy and low negative chemical potential render Li a geopolitically significant resource.It is urgent to develop a low-cost,efficient method to improve lithium extraction.Herein,Li ion(Li+)adsorption in coal-bearing strata kaolinite(CSK)was studied.The effects of pre-activation acid leaching(meta-kaolinite/H2SO4,MK-HS)and dimethyl sulfoxide intercalation(coal-bearing strata kaolinite/dimethyl sulfoxide,CSK-DMSO)on the Li+adsorption capacity were studied under the same adsorption conditions.The results indicated that the adsorption was completed in 60 min under alkaline conditions(pH=8.5),a high solution concentration(400 mg/L),and a low dosage(1 g/100 mL);and the comprehensive adsorption capacity is MK-HS>CSK-DMSO>CSK.Furthermore,the DMSO intercalation caused the interlayer spacing of the CSK to increase,which provided more space for Li+to enter and increase the adsorption capacity.After thermal pre-activation and acid leaching,structural failure and lattice collapse resulted in the presence of more micropores in the MK-HS,which resulted in a 10-fold increase in its specific surface area and caused coordination bond changes(Al(VI)to Al(IV))and leaching of aluminum(Al)from the lattice.It is proposed that these structural changes greatly improve the activity of CSK so that Li+cannot only adsorb onto the surface and between the layers but can also enter the lattice defects,which results in the MK-HS having the best adsorption performance.Combined with the adsorption kinetics analysis,the adsorption methods of CSK and two modified materials include physical adsorption and chemical adsorption.In this study,the adsorption capacity of CSK and its modified products to Li were explored,providing a new option for the reuse of CSK and the extraction of Li.展开更多
Tidal sand ridges are large-scale linear bottom configurations in a good many tidal seas. The modern tidal sand ridges in Jianggang area, the northern part of Jiangsu Province, China, have attracted the attention of g...Tidal sand ridges are large-scale linear bottom configurations in a good many tidal seas. The modern tidal sand ridges in Jianggang area, the northern part of Jiangsu Province, China, have attracted the attention of geological circles because of the radial form and large scale. Berg, Brenner and Davies have reported that linear sand bodies of this kind were recognized within the Mesozoic strata of western America, but we have not seen any reports about the discovery of this kind of sediment from the ancient lithofacies analyses of China, especially in coal-bearing strata. Based on the study of sedimentary facies, this note describes the deposits of tidal sand ridges in the coal-bearing strata of China.展开更多
Considerable progresses in the sedimentologic studies of the anastomosing river models have been made in recent years. There are now many modern and ancient examples such as those described by Smith, Rust et al. Flore...Considerable progresses in the sedimentologic studies of the anastomosing river models have been made in recent years. There are now many modern and ancient examples such as those described by Smith, Rust et al. Flores et al. But all examples are found in the alluvial plains and the intermontane basins. None is known reporting about the upper delta plain environment. However, this type of distributary channels展开更多
Carbonate cemented zones are normally adjacent to the top overpressured surface in the central Junggar Basin,NW China.Stable carbon and oxygen isotopic compositions and petrological investigations of carbonate cements...Carbonate cemented zones are normally adjacent to the top overpressured surface in the central Junggar Basin,NW China.Stable carbon and oxygen isotopic compositions and petrological investigations of carbonate cements in the carbonate cemented zones indicate that:(1) carbonate cements are composed dominantly of ferrocalcite,ferroan dolomite,and ankerite;(2) carbonate cements are formed under a high temperature circumstance in the subsurface,and organic fluid migration has an important effect on the formation of them;and(3) carbon and oxygen ions in the carbonate cements migrate from the underlying overpressured system.This suggests that the occurrence of carbonate cemented zones in this region results from multiple phases of organic fluid expulsion out of the overpressure compartment through geological time.This study provides a plausible mechanism of the formation of carbonate cemented zones adjacent to the top overpressured surface in the clastic sedimentary basins,and has an important implication for understanding the internal correlation between the formation of carbonate cemented zones adjacent to top overpressured surface and geofluids expulsion out of overpressured system.展开更多
The Yanchang gas field is located in the Ordos Basin of central China to the southeast of the Yishan Slope, covers an exploration area of 2.6× 10~4 km^2 and has approximately 3.5× 10^(11) m^3 of gas reserv...The Yanchang gas field is located in the Ordos Basin of central China to the southeast of the Yishan Slope, covers an exploration area of 2.6× 10~4 km^2 and has approximately 3.5× 10^(11) m^3 of gas reserves. The gas field is dominated by lithologic gas reservoirs but also has a few structural gas reservoirs. Sand bodies were deposited in the Carboniferous Benxi Formation around offshore barrier islands and in distributary channel fillings in the delta front of the P_1s_2 and P_1s_1 divisions of the Permian Shanxi Formation. The P_2h_8 division of the Shihezi Formation contains the main reservoirs. The depths of the reservoirs are between 1 970 and 3 500 m. The Yanchang gas field can be classified as a typical tight sandstone gas reservoir filed because its porosity is lower than 10% and permeability lower than 1 mD. The discovery and development of the Yanchang gas field has led to a great increase in total natural gas reserves in the Ordos Basin. Its exploration has improved methods of locating large gas fields in deep-water depositional environments in the south part of the basin.展开更多
基金founded by the National Natural Science Foundation of China(Grant No.41772130)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX22_2602)+1 种基金the Graduate Innovation Program of China University of Mining and Technology(Grant No.2022WLKXJ035)the Fundamental Research Program of Shanxi Province(Grant No.202103021223283)。
文摘The continuously collected cores from the Permo-Carboniferous coal-bearing strata of the eastern Ordos Basin are essential for studying the hydrocarbon potential in this region.This study adopted sedimentological and geochemical methods to analyze the sedimentary environment,material composition,and geochemical characteristics of the coal-bearing strata.The differences in depositional and paleoclimatic conditions were compared;and the factors influencing the organic matter content of fine-grained sediments were explored.The depositional environment of the Benxi and Jinci formations was lagoon to tidal flat with weakly reduced waters with low salinity and dry-hot paleoclimatic conditions;while that of the Taiyuan Formation was a carbonate platform and shallow water delta front,where the water was highly reductive.The xerothermic climate alternated with the warm and humid climate.The period of maximum transgression in the Permo-Carboniferous has the highest water salinity.The Shanxi Formation was deposited in a shallow water delta front with a brackish and fresh water environment and alternative weak reductiveness.And the paleoclimate condition is dry-hot.The TOC content in fine-grained samples was averaging 1.52%.The main controlling mechanism of organic matter in this area was the input conditions according to the analysis on input and preservation of organic matter.
基金supported by the National Natural Science Foundation of China
文摘The Longtan Formation was originally thought to belong to the Late Permian, but this study reveals that the lower part of this formation belongs to the Middle Permian. The study proposes the corresponding chro-nostratigraphic boundary and new schemes for the correlation of geological sections. Based on these schemes a new understanding on the accumulation regularity of Permian coal measures in South China is reached.
基金the National Natural Science Foundation of China(No.41672149 and No.41672146)the Key Project of the Natural Science Foundation of China(No.41530314)+3 种基金the Application Research Plan of Key Scientific Research Projects in Colleges and Universities of Henan Province(20B610006)Scientific Research Foundation of the Shandong Provincial Key Laboratory of Depositional Mineralization&Sedimentary Mineralsthe Shandong University of Science and Technology(DMSM2017012)the National Science and Technology Major Project(2016ZX05044-002).
文摘Multiple coal seams and interbedded rock assemblages formed in vertical progression due to the influence of multiple stages of sea level transgressions.Based on mercury injection experiment,low temperature liquid nitrogen experiment,porosity and permeability experiment and breakthrough pressure experiment,the vertical variation characteristics of coal-bearing strata in Gujiao block are explained in detail.The results of the mercury injection and low temperature liquid nitrogen experiments show that the pore structure characteristics fluctuate with increasing depth in the strata,with fewer micropores followed by transition pores.The BET specific surface area and average pore diameter of the Shanxi Formation are generally larger than those of the Taiyuan Formation.Due to the continuous cyclic sequence stratigraphy changes,the porosity,permeability,breakthrough pressure and breakthrough time of the samples show a certain cyclicity.Within the same sequence,the porosity is larger,and the permeability is smaller near the maximum flooding surface.Although the permeability of the sandstone samples is higher,the porosity is lower,and the breakthrough pressure and breakthrough times are greater.The strata in the study area formed in an oxidized environment that was affected by freshwater,and the pore structure of different lithologies is quite different.After the formation of sandstone,the intergranular pores generally underwent filling with secondary quartz,clay minerals and organic matter,resulting in low porosity and permeability.
基金The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China(Grant No.42172043)the Science and Technology Major Projects of Shanxi Province of China(No.20181101003)+1 种基金the Fundamental Research Funds for the Central Universities(No.300102299306)Scientific Innovation Practive Project of Postgraduates of Chang’an University(No.300103722045)。
文摘The sharp increase in the demand for lithium(Li)for high-energy-storage battery materials due to its high specific energy and low negative chemical potential render Li a geopolitically significant resource.It is urgent to develop a low-cost,efficient method to improve lithium extraction.Herein,Li ion(Li+)adsorption in coal-bearing strata kaolinite(CSK)was studied.The effects of pre-activation acid leaching(meta-kaolinite/H2SO4,MK-HS)and dimethyl sulfoxide intercalation(coal-bearing strata kaolinite/dimethyl sulfoxide,CSK-DMSO)on the Li+adsorption capacity were studied under the same adsorption conditions.The results indicated that the adsorption was completed in 60 min under alkaline conditions(pH=8.5),a high solution concentration(400 mg/L),and a low dosage(1 g/100 mL);and the comprehensive adsorption capacity is MK-HS>CSK-DMSO>CSK.Furthermore,the DMSO intercalation caused the interlayer spacing of the CSK to increase,which provided more space for Li+to enter and increase the adsorption capacity.After thermal pre-activation and acid leaching,structural failure and lattice collapse resulted in the presence of more micropores in the MK-HS,which resulted in a 10-fold increase in its specific surface area and caused coordination bond changes(Al(VI)to Al(IV))and leaching of aluminum(Al)from the lattice.It is proposed that these structural changes greatly improve the activity of CSK so that Li+cannot only adsorb onto the surface and between the layers but can also enter the lattice defects,which results in the MK-HS having the best adsorption performance.Combined with the adsorption kinetics analysis,the adsorption methods of CSK and two modified materials include physical adsorption and chemical adsorption.In this study,the adsorption capacity of CSK and its modified products to Li were explored,providing a new option for the reuse of CSK and the extraction of Li.
文摘Tidal sand ridges are large-scale linear bottom configurations in a good many tidal seas. The modern tidal sand ridges in Jianggang area, the northern part of Jiangsu Province, China, have attracted the attention of geological circles because of the radial form and large scale. Berg, Brenner and Davies have reported that linear sand bodies of this kind were recognized within the Mesozoic strata of western America, but we have not seen any reports about the discovery of this kind of sediment from the ancient lithofacies analyses of China, especially in coal-bearing strata. Based on the study of sedimentary facies, this note describes the deposits of tidal sand ridges in the coal-bearing strata of China.
文摘Considerable progresses in the sedimentologic studies of the anastomosing river models have been made in recent years. There are now many modern and ancient examples such as those described by Smith, Rust et al. Flores et al. But all examples are found in the alluvial plains and the intermontane basins. None is known reporting about the upper delta plain environment. However, this type of distributary channels
基金supported by the Important National Science & Technology Specific Projects (Grant No.2008ZX05001)Scientific Development Projects of Petrochina Company Limited (Grant No.2008B-0100)+2 种基金the Doctoral Education Program Fund of Ministry of Education,China (Grant No.20060491505)American Association of Petroleum Geologists Grants-in-Aid Foundation ProgramNational Natural Science Foundation of China (Grant Nos.40739904,40902039)
文摘Carbonate cemented zones are normally adjacent to the top overpressured surface in the central Junggar Basin,NW China.Stable carbon and oxygen isotopic compositions and petrological investigations of carbonate cements in the carbonate cemented zones indicate that:(1) carbonate cements are composed dominantly of ferrocalcite,ferroan dolomite,and ankerite;(2) carbonate cements are formed under a high temperature circumstance in the subsurface,and organic fluid migration has an important effect on the formation of them;and(3) carbon and oxygen ions in the carbonate cements migrate from the underlying overpressured system.This suggests that the occurrence of carbonate cemented zones in this region results from multiple phases of organic fluid expulsion out of the overpressure compartment through geological time.This study provides a plausible mechanism of the formation of carbonate cemented zones adjacent to the top overpressured surface in the clastic sedimentary basins,and has an important implication for understanding the internal correlation between the formation of carbonate cemented zones adjacent to top overpressured surface and geofluids expulsion out of overpressured system.
文摘The Yanchang gas field is located in the Ordos Basin of central China to the southeast of the Yishan Slope, covers an exploration area of 2.6× 10~4 km^2 and has approximately 3.5× 10^(11) m^3 of gas reserves. The gas field is dominated by lithologic gas reservoirs but also has a few structural gas reservoirs. Sand bodies were deposited in the Carboniferous Benxi Formation around offshore barrier islands and in distributary channel fillings in the delta front of the P_1s_2 and P_1s_1 divisions of the Permian Shanxi Formation. The P_2h_8 division of the Shihezi Formation contains the main reservoirs. The depths of the reservoirs are between 1 970 and 3 500 m. The Yanchang gas field can be classified as a typical tight sandstone gas reservoir filed because its porosity is lower than 10% and permeability lower than 1 mD. The discovery and development of the Yanchang gas field has led to a great increase in total natural gas reserves in the Ordos Basin. Its exploration has improved methods of locating large gas fields in deep-water depositional environments in the south part of the basin.