The article presents the path planning algorithm to be applied in the Chinese chess game, and uses multiple mobile robots to present the experimental scenario. Users play the Chinese chess game using the mouse on the ...The article presents the path planning algorithm to be applied in the Chinese chess game, and uses multiple mobile robots to present the experimental scenario. Users play the Chinese chess game using the mouse on the supervised computer. The supervised computer programs the motion paths using A* searching algorithm, and controls mobile robots moving on the grid based chessboard platform via wireless radio frequency (RF) interface. The A* searching algorithm solves shortest path problems of mobile robots from the start point to the target point, and avoids the obstacles on the chessboard platform. The supervised computer calculates the total time to play the game, and computes the residual time to play chess in the step for each player. The simulation results can fired out the shortest motion paths of the mobile robots (chesses) moving to target points from start points in the monitor, and decides the motion path to be existence or not. The eaten chess can moves to the assigned position, and uses the A* searching algorithm to program the motion path, too. Finally, the authors implement the simulation results on the chessboard platform using mobile robots. Users can play the Chinese chess game on the supervised computer according to the Chinese chess game rule, and play each step of the game in the assigned time. The supervised computer can suggests which player don't obey the rules of the game, and decides which player to be a winner. The scenario of the Chinese chess game feedback to the user interface using the image system.展开更多
The chess game provides a very rich experience in neighborhood types. The chess pieces have vertical, horizontal, diagonal, up/down or combined movements on one or many squares of the chess. These movements can associ...The chess game provides a very rich experience in neighborhood types. The chess pieces have vertical, horizontal, diagonal, up/down or combined movements on one or many squares of the chess. These movements can associate with neighborhoods. Our work aims to set a behavioral approximation between calculations carried out by means of traditional computation tools such as ordinary differential equations (ODEs) and the evolution of the value of the cells caused by the chess game moves. Our proposal is based on a grid. The cells’ value changes as time pass depending on both their neighborhood and an update rule. This framework succeeds in applying real data matching in the cases of the ODEs used in compartmental models of disease expansion, such as the well-known Susceptible-Infected Recovered (SIR) model and its derivatives, as well as in the case of population dynamics in competition for resources, depicted by the Lotke-Volterra model.展开更多
Game-tree search plays an important role in the field of Artificial Intelligence (AI). In this paper, we characterize one parallel game-tree search workload in chess: the latest version of Crafty, a state of art pr...Game-tree search plays an important role in the field of Artificial Intelligence (AI). In this paper, we characterize one parallel game-tree search workload in chess: the latest version of Crafty, a state of art program, on two Intel Xeon shared-memory multiprocessor systems. Our analysis shows that Crafty is latency-sensitive and the hash-table and dynamic tree splitting used in Crafty cause large scalability penalties. They consume 35%-50% of the running time on the 4-way system. Furthermore, Crafty is not bandwidth-limited.展开更多
文摘The article presents the path planning algorithm to be applied in the Chinese chess game, and uses multiple mobile robots to present the experimental scenario. Users play the Chinese chess game using the mouse on the supervised computer. The supervised computer programs the motion paths using A* searching algorithm, and controls mobile robots moving on the grid based chessboard platform via wireless radio frequency (RF) interface. The A* searching algorithm solves shortest path problems of mobile robots from the start point to the target point, and avoids the obstacles on the chessboard platform. The supervised computer calculates the total time to play the game, and computes the residual time to play chess in the step for each player. The simulation results can fired out the shortest motion paths of the mobile robots (chesses) moving to target points from start points in the monitor, and decides the motion path to be existence or not. The eaten chess can moves to the assigned position, and uses the A* searching algorithm to program the motion path, too. Finally, the authors implement the simulation results on the chessboard platform using mobile robots. Users can play the Chinese chess game on the supervised computer according to the Chinese chess game rule, and play each step of the game in the assigned time. The supervised computer can suggests which player don't obey the rules of the game, and decides which player to be a winner. The scenario of the Chinese chess game feedback to the user interface using the image system.
文摘The chess game provides a very rich experience in neighborhood types. The chess pieces have vertical, horizontal, diagonal, up/down or combined movements on one or many squares of the chess. These movements can associate with neighborhoods. Our work aims to set a behavioral approximation between calculations carried out by means of traditional computation tools such as ordinary differential equations (ODEs) and the evolution of the value of the cells caused by the chess game moves. Our proposal is based on a grid. The cells’ value changes as time pass depending on both their neighborhood and an update rule. This framework succeeds in applying real data matching in the cases of the ODEs used in compartmental models of disease expansion, such as the well-known Susceptible-Infected Recovered (SIR) model and its derivatives, as well as in the case of population dynamics in competition for resources, depicted by the Lotke-Volterra model.
文摘Game-tree search plays an important role in the field of Artificial Intelligence (AI). In this paper, we characterize one parallel game-tree search workload in chess: the latest version of Crafty, a state of art program, on two Intel Xeon shared-memory multiprocessor systems. Our analysis shows that Crafty is latency-sensitive and the hash-table and dynamic tree splitting used in Crafty cause large scalability penalties. They consume 35%-50% of the running time on the 4-way system. Furthermore, Crafty is not bandwidth-limited.