In this paper, we conduct research on the dynamic demand response problem in smart grid to control the energy consumption. The objective of the energy consumption control is constructed based on differential game, as ...In this paper, we conduct research on the dynamic demand response problem in smart grid to control the energy consumption. The objective of the energy consumption control is constructed based on differential game, as the dynamic of each users’ energy state in smart gird can be described based on a differential equation. Concept of electricity sharing is introduced to achieve load shift of main users from the high price hours to the low price hours. Nash equilibrium is given based on the Hamilton equation and the effectiveness of the proposed model is verified based on the numerical simulation results.展开更多
Computational grids (CGs) aim to offer pervasive access to a diverse collection of geographically distributed resources owned by different serf-interested agents or organizations. These agents may manipulate the res...Computational grids (CGs) aim to offer pervasive access to a diverse collection of geographically distributed resources owned by different serf-interested agents or organizations. These agents may manipulate the resource allocation algorithm in their own benefit, and their selfish behavior may lead to severe performance degradation and poor efficiency. In this paper, game theory is introduced to solve the problem of barging for resource collection in heterogeneous distributed systems. By using the Cournot model that is an important model in static and complete information games, the algorithm is optimized in order to maximize the benefit. It can be seen that the approach is more suitable to the real situation and has practical use. Validity of the solutions is shown.展开更多
For the negative impact of large-scale electric vehicles (EVs) disorderly charging on the power grid, a multi-objective optimization strategy for coordinated charging and discharging of EVs based on Stackelberg game i...For the negative impact of large-scale electric vehicles (EVs) disorderly charging on the power grid, a multi-objective optimization strategy for coordinated charging and discharging of EVs based on Stackelberg game is proposed. As the leader, the grid company aims to stabilize load fluctuations and formulate a reasonable electricity price strategy to guide EVs to participate in vehicle-to-grid (V2G);As followers, EV users optimize their charging plans based on electricity price information with the objective of reducing costs and obtaining good comfort. This paper uses the MOPSO algorithm to solve the proposed multi-objective Stackelberg problem, and calculates the optimization results under various preferences, which proves the effectiveness of the proposed model and method.展开更多
In this paper, an autonomous and distributive demand-side management based on Bayesian game theory is developed and applied among users in a grid connected micro-grid with storage. To derive that strategy, an energy c...In this paper, an autonomous and distributive demand-side management based on Bayesian game theory is developed and applied among users in a grid connected micro-grid with storage. To derive that strategy, an energy consumption of shiftable loads belonging to a given user is modelled as a noncooperative three-player game of incomplete information, in which each user plays against the storage unit and an opponent gathering all the other users in the micro-grid. Each player is assumed to be endowed with statistical information about its behavior and that of its opponents so that he can take actions maximizing his expected utility. Results of the proposed strategy evaluated by simulating, under MATLAB environment, a connected micro-grid with storage device evidence its efficacy when employed to manage the charging of electric vehicles.展开更多
基金supported by National Key R&D Program of China, No.2018YFB1003905the Fundamental Research Funds for the Central Universities, No.FRF-TP-18-008A3
文摘In this paper, we conduct research on the dynamic demand response problem in smart grid to control the energy consumption. The objective of the energy consumption control is constructed based on differential game, as the dynamic of each users’ energy state in smart gird can be described based on a differential equation. Concept of electricity sharing is introduced to achieve load shift of main users from the high price hours to the low price hours. Nash equilibrium is given based on the Hamilton equation and the effectiveness of the proposed model is verified based on the numerical simulation results.
基金Project supported by the Science Foundation of Shanghai Municipal Commission of Science and Technology(Grant No.00JC14052)
文摘Computational grids (CGs) aim to offer pervasive access to a diverse collection of geographically distributed resources owned by different serf-interested agents or organizations. These agents may manipulate the resource allocation algorithm in their own benefit, and their selfish behavior may lead to severe performance degradation and poor efficiency. In this paper, game theory is introduced to solve the problem of barging for resource collection in heterogeneous distributed systems. By using the Cournot model that is an important model in static and complete information games, the algorithm is optimized in order to maximize the benefit. It can be seen that the approach is more suitable to the real situation and has practical use. Validity of the solutions is shown.
文摘For the negative impact of large-scale electric vehicles (EVs) disorderly charging on the power grid, a multi-objective optimization strategy for coordinated charging and discharging of EVs based on Stackelberg game is proposed. As the leader, the grid company aims to stabilize load fluctuations and formulate a reasonable electricity price strategy to guide EVs to participate in vehicle-to-grid (V2G);As followers, EV users optimize their charging plans based on electricity price information with the objective of reducing costs and obtaining good comfort. This paper uses the MOPSO algorithm to solve the proposed multi-objective Stackelberg problem, and calculates the optimization results under various preferences, which proves the effectiveness of the proposed model and method.
文摘In this paper, an autonomous and distributive demand-side management based on Bayesian game theory is developed and applied among users in a grid connected micro-grid with storage. To derive that strategy, an energy consumption of shiftable loads belonging to a given user is modelled as a noncooperative three-player game of incomplete information, in which each user plays against the storage unit and an opponent gathering all the other users in the micro-grid. Each player is assumed to be endowed with statistical information about its behavior and that of its opponents so that he can take actions maximizing his expected utility. Results of the proposed strategy evaluated by simulating, under MATLAB environment, a connected micro-grid with storage device evidence its efficacy when employed to manage the charging of electric vehicles.