A soccer robot system (HIT 1) was built to participate in MIROSOT_China99 held in Harbin Institute of Technology. Robot soccer game is a very complex robot application that incorporates real time vision system, robot ...A soccer robot system (HIT 1) was built to participate in MIROSOT_China99 held in Harbin Institute of Technology. Robot soccer game is a very complex robot application that incorporates real time vision system, robot control, wireless communication and control of multiple robots. In the paper, we present the design and the hardware architecture and software architecture of our distributed multiple robot system.展开更多
Autonomous Navigation Modules are capable of driving a robotic platform without human direct participation. It is usual to have more than one Autonomous Navigation Modules in the same work space. When an emergency sit...Autonomous Navigation Modules are capable of driving a robotic platform without human direct participation. It is usual to have more than one Autonomous Navigation Modules in the same work space. When an emergency situation occurs, these modules should achieve a desired formation in order to efficiently escape and avoid motion deadlock. We address the collaboration problem between two agents such as Autonomous Navigation Modules. A new approach for team collaborative control based on the incentive Stackelberg game theory is presented. The procedure to find incentive matrices is provided for the case of geometric trajectory planning and following. A collaborative robotic architecture based on this approach is proposed. Simulation results performed with two virtual robotic platforms show the efficiency of this approach.展开更多
基金Supported by the High Technology Research and Developmeent Program of China
文摘A soccer robot system (HIT 1) was built to participate in MIROSOT_China99 held in Harbin Institute of Technology. Robot soccer game is a very complex robot application that incorporates real time vision system, robot control, wireless communication and control of multiple robots. In the paper, we present the design and the hardware architecture and software architecture of our distributed multiple robot system.
文摘Autonomous Navigation Modules are capable of driving a robotic platform without human direct participation. It is usual to have more than one Autonomous Navigation Modules in the same work space. When an emergency situation occurs, these modules should achieve a desired formation in order to efficiently escape and avoid motion deadlock. We address the collaboration problem between two agents such as Autonomous Navigation Modules. A new approach for team collaborative control based on the incentive Stackelberg game theory is presented. The procedure to find incentive matrices is provided for the case of geometric trajectory planning and following. A collaborative robotic architecture based on this approach is proposed. Simulation results performed with two virtual robotic platforms show the efficiency of this approach.