We study evolutionary games in two-layer networks by introducing the correlation between two layers through the C-dominance or the D-dominance. We assume that individuals play prisoner's dilemma game (PDG) in one l...We study evolutionary games in two-layer networks by introducing the correlation between two layers through the C-dominance or the D-dominance. We assume that individuals play prisoner's dilemma game (PDG) in one layer and snowdrift game (SDG) in the other. We explore the dependences of the fraction of the strategy cooperation in different layers on the game parameter and initial conditions. The results on two-layer square lattices show that, when cooperation is the dominant strategy, initial conditions strongly influence cooperation in the PDG layer while have no impact in the SDG layer. Moreover, in contrast to the result for PDG in single-layer square lattices, the parameter regime where cooperation could be maintained expands significantly in the PDG layer. We also investigate the effects of mutation and network topology. We find that different mutation rates do not change the cooperation behaviors. Moreover, similar behaviors on cooperation could be found in two-layer random networks.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11575036,71301012,and 11505016
文摘We study evolutionary games in two-layer networks by introducing the correlation between two layers through the C-dominance or the D-dominance. We assume that individuals play prisoner's dilemma game (PDG) in one layer and snowdrift game (SDG) in the other. We explore the dependences of the fraction of the strategy cooperation in different layers on the game parameter and initial conditions. The results on two-layer square lattices show that, when cooperation is the dominant strategy, initial conditions strongly influence cooperation in the PDG layer while have no impact in the SDG layer. Moreover, in contrast to the result for PDG in single-layer square lattices, the parameter regime where cooperation could be maintained expands significantly in the PDG layer. We also investigate the effects of mutation and network topology. We find that different mutation rates do not change the cooperation behaviors. Moreover, similar behaviors on cooperation could be found in two-layer random networks.