The aged and quenched microstructures of both alloys, Ti-42at-%Al and Ti-45at -%Al,homogenized in the disordered single phase field. were investigated And the results show that the quinched microstructure is a supersa...The aged and quenched microstructures of both alloys, Ti-42at-%Al and Ti-45at -%Al,homogenized in the disordered single phase field. were investigated And the results show that the quinched microstructure is a supersaturated single phase of ordered 22. When the supersaturated phase is aged in the two phase range at 1273 and 1373 K, it will transform to a lamellar microstructure of γ+α2. with a discontinuous decomposition mechanism in Ti-42at-%Al alloy and a semicontinuous decomposition mechanism in T1-45at-%Al alloy. With the methods of quantitative metallograph examination and X-ray diffraction analysis. the relationship between the amount of γ, phase precipitation and the time of isothermal transformation is agreed展开更多
A fine-grained TiAl alloy with a composition of Ti-45Al-2Cr-2Nb-1B-0.5Ta-0.225Y (mole fraction, %) was prepared by double mechanical milling(DMM) and spark plasma sintering(SPS). The relationship among sintering...A fine-grained TiAl alloy with a composition of Ti-45Al-2Cr-2Nb-1B-0.5Ta-0.225Y (mole fraction, %) was prepared by double mechanical milling(DMM) and spark plasma sintering(SPS). The relationship among sintering temperature, microstructure and mechanical properties was studied. The results show that the morphology of double mechanical milled powder is regular with size in the range of 20-40 μm and mainly composed of TiAl and Ti3Al phases. The main phase TiAl and few phases Ti3Al, Ti2Al and TiB2 were observed in the SPSed alloys. For samples sintered at 900 ℃ the equiaxed crystal grain microstructure is achieved with size in the range of 100-200 nm. With increasing the SPS temperature from 900 ℃to 1000 ℃ the size of equiaxed crystal grain obviously increases, the microhardness decreases from HV658 to HV616, and the bending strength decreases from 781 MPa to 652 MPa. In the meantime, the compression fracture strength also decreases from 2769 MPa to 2669 MPa, and the strain to fracture in compression increases from 11.69% to 17.76%. On the base of analysis of fractographies, it shows that the compression fracture transform of the SPSed alloys is intergranular rupture.展开更多
The effects of a new technology, multi-step thermo-mechanical treatment, on the microstructure, deformation substructure and mechanical properties at ambient and elevated tempemture of can-forged Ti-33 Al-3 Cr-0.5Mo (...The effects of a new technology, multi-step thermo-mechanical treatment, on the microstructure, deformation substructure and mechanical properties at ambient and elevated tempemture of can-forged Ti-33 Al-3 Cr-0.5Mo (wt%) Alloy were investigated.The results show that, after multi-step thermo-mechanical treatment of can-forged specimens, homogeneous, fine microstructures can be obtained in the whole TiAl-based alloy specimens. Furthermore, the specimen with homogeneous and fine full lamellae microstructure demonstrutes excellent comprehensive mechanical properties at ambient and elevated temperature.展开更多
Three novel multi-microalloying TiAl-based alloys containing high Nb were designed and fabricated Thermogravimetric method was applied to investigate the influence of Cr on the oxidation behavior of high Nb TiAl alloy...Three novel multi-microalloying TiAl-based alloys containing high Nb were designed and fabricated Thermogravimetric method was applied to investigate the influence of Cr on the oxidation behavior of high Nb TiAl alloy at 1,073 K for 200 h in laboratory air. The 2 at.% and 4 at.% Cr were added into the alloy,(respectivel named 2 Cr and 4 Cr compared to the Cr-free ternary alloy, 0 Cr alloy). The alloys' microstructure and compositio as well as the composition distribution of the oxidation scale were analyzed by means of Scanning Electro Microscopy(SEM), Energy Dispersive Spectroscopy(EDS), and X-Ray Diffractometry(XRD). The results show that the addition of Cr decreases the grain size of the Nb-TiAl alloy and leads to a transformation from a full lamellar structure to a nearly fully lamellar structure. When oxidized at 1,073 K for 200 h, the oxidized mass gai of the alloy increases with an increase in Cr addition amount in the first 100 h and decreases in the last 100 h With the increase of Cr content, the oxidation surface turns compact but uneven in morphology, which may affec the oxidation resistance of the alloy by increasing the peeling off risk of the oxidation layer at friction conditions.展开更多
Unbalanced properties for both fine-grained gamma and coarse-grained lamellar microstructures typically produced in gamma alloys are described. Efforts for the improvements are reviewed along with some experimental re...Unbalanced properties for both fine-grained gamma and coarse-grained lamellar microstructures typically produced in gamma alloys are described. Efforts for the improvements are reviewed along with some experimental results. Empirical improvements have been made in cast alloys, which have led gamma alloys to a viable materials technology and to the development of various application areas for gas turbine engines as well as automotive engines. Efforts to understand fundamental and applied aspects leading to the improvements are assessed for wrought alloys. Optimization of microstructures through process control,innovative heat treatments, alloy chemistry modification and their combinations have progressed in the endeavor. Similar efforts have just begun for cast alloys where work on fundamental understanding has been lagging. Future directions are suggested for further improvements and predicted for the development of higher temperature/performance alloys.展开更多
TiAI-based alloys with various compositions (including Ti-48Al, Ti-47Al-2Cr-2Nb, Ti-47Al-2Cr-2Nb-0.2B and Ti-47Al-3Cr, in mole fraction) had been prepared by elemental powder metallurgy (EPM). The results have shown t...TiAI-based alloys with various compositions (including Ti-48Al, Ti-47Al-2Cr-2Nb, Ti-47Al-2Cr-2Nb-0.2B and Ti-47Al-3Cr, in mole fraction) had been prepared by elemental powder metallurgy (EPM). The results have shown that the density of the prepared Ti-48AI alloy increases with increasing hot pressing temperature up to 1300℃. The Ti-48AI alloy microstructure mainly consisted of island-like Ti3Al phase and TiAl matrix at hot pressing temperature below 1300℃, however, coarse α2/γ lamellar colonies and γ grains appeared at 1400℃. It has also indicated that the additions of elemental Cr and B can refine the alloy microstructure. The main microstructural inhomogeneity in EPM TiAI-based alloys was the island-like α2 phase or the aggregate of α2/γ lamellar colony, and such island-like structure will be inherited during subsequent heat treatment in (α+γ) field. Only after heat treatment in a field would this structure be eliminated. The mechanical properties of EPM TiAl-based alloys with various compositions were tested, and the effect of alloy elements on the mechanical properties was closely related to that of alloy elements on the alloy microstructures. Based on the above results, TiAI-based alloy exhaust valves were fabricated by elemental powder metallurgy and diffusion joining. The automobile engine test had demonstrated that the performance of the manufactured valves was very promising for engine service.展开更多
The analysis of the microstructural characterization and phase composition of electron beam welded joint zones of Ti- 43Al-9V-O. 3Y alloy has been done in this study. The welded seam is mainly composed of B2 phase, th...The analysis of the microstructural characterization and phase composition of electron beam welded joint zones of Ti- 43Al-9V-O. 3Y alloy has been done in this study. The welded seam is mainly composed of B2 phase, the partial γ + α2 twophase lamellar structure and granular γm phase. And the lanthanon Y existed as YAl2 phase and served as grain refined. The impact of different cooling rates on joint microstructure, fracture characteristic and tensile strength were investigated. The high cooling rate restrained the structural transformation and resulted in the ordering structure. The fracture of the joint was brittle cleavage fracture because the ordering structure went against restraining the crack propagation. With the decrease of cooling rate, the transformation amounts of lamellar structure increased, and the fracture presented the layered and crosslayered characteristic.展开更多
The Ti-48Al alloy was pack siliconized with 15%Si+85%Al2O3. The microstructure of the siliconized coating on the TiAl-based alloy was analyzed and its effect on oxidation resistance was investigated. The specimens bef...The Ti-48Al alloy was pack siliconized with 15%Si+85%Al2O3. The microstructure of the siliconized coating on the TiAl-based alloy was analyzed and its effect on oxidation resistance was investigated. The specimens before and after cycle oxidation were examined by XRD and SEM equipped with XEDS. The results showed that the coating is composed of a thin Al2O3 outer layer and a composite inner layer of Ti5Si3 with an appropriate amount of Al2O3 dispersed in. Cycle oxidation tests showed that the high temperature oxidation resistance of TiAl-based alloy was greatly improved by forming such composite coating. No spaliation and crack happened and the weight gain was very small after cycle oxidation at 900℃ for 314h.展开更多
The TiAl-based laminated composite sheet of 150 mm × 100 mm × 0.2 mm, with 24 TiAl layers and 23 Nb layers laid alternately one on another, was successfully fabricated using the electron beam-physical vapor ...The TiAl-based laminated composite sheet of 150 mm × 100 mm × 0.2 mm, with 24 TiAl layers and 23 Nb layers laid alternately one on another, was successfully fabricated using the electron beam-physical vapor deposition (EB-PVD) method. The microstructure and properties of the sheet were investigated on an atomic force microscope (AFM), a scanning electron microscope (SEM) and a tensile testing machine. The results indicate that the evenly distributed Nb layers are well joined with the TiAl layers, and the interfaces between layers are transparent, and every interlayer spacing is of about 8μm. The fractures appear to be a mixture of intergranular fractures and somewhat ductile quasi-cleavage ones. Despite its slight influence on ultimate tensile strength, the inserts of Nb layers efficiently increase the room temperature ductility of TiAl-based alloys due to the crack deflection effect.展开更多
The effect of heat treatment on the microstructure evolution of a high Nb containing TiAl alloy has been studied. The results indicate that β-segregation, β-segregation and S-segregation in the as-cast and as-forged...The effect of heat treatment on the microstructure evolution of a high Nb containing TiAl alloy has been studied. The results indicate that β-segregation, β-segregation and S-segregation in the as-cast and as-forged alloys can be effectively eliminated at the temperature above Tα (1350-1400℃) for long holding time (12-24 h) and the full lamellar (FL) microstructure is gained. For the two alloys, the lamellar colony sizes are 120 μm and 2000 μm, respectively after heat treatment at 1400℃ for 12 h. Meanwhile, the sizes are 210 μm and 3000 μm, respectively at 1350℃ for 24 h. To get a fine homogenous microstructure, the primary as-cast alloy is first subjected to preheat treatment for eliminating the segregations. After the preheat treatment, the ailoy is processed by the multi-step canned forging to attain the microstructure with fine grain size.展开更多
In order to improve mechanical properties of TiAlNb alloys,different contents of silicon were added into Ti48Al6Nb alloy.The Ti48Al6NbxSi (x=0,0.1,0.2,0.3,0.4 and 0.5,at.%) alloys were prepared by vacuum arc melting.T...In order to improve mechanical properties of TiAlNb alloys,different contents of silicon were added into Ti48Al6Nb alloy.The Ti48Al6NbxSi (x=0,0.1,0.2,0.3,0.4 and 0.5,at.%) alloys were prepared by vacuum arc melting.The phase constitution,microstructure evolution and mechanical properties of the alloys were studied.Results show that the Ti48Al6NbxSi alloys consist of γ-TiAl phase,α2-Ti3Al phase and B2 phase,and Ti5Si3 silicide phase is formed when the addition of silicon is higher than 0.3at.%.The addition of silicon leads to the decrease in γ phase and increase in α2 phase.The formation of silicide decreases the amount of Nb dissolved in the TiAl matrix,and therefore decreases B2 phase.Compressive tests show that the ultimate strength of the alloys increases from 2,063 MPa to 2,281 MPa with an increase in silicon from 0 to 0.5at.%,while the fracture strain decreases from 34.7% to 30.8%.The increase of compressive strength and decrease of fracture strain can be attributed to the decrease of B2 phase and the formation of Ti5Si3 phase by the addition of silicon.The strengthening mechanism is changed from solid solution strengthening when the addition of silicon is less than 0.3at.% to combination of solid solution strengthening and secondary phase strengthening when the addition of silicon is higher than 0.3at.%.展开更多
Diffusion behavior of Nb in elemental powder metallurgy high Nb containing TiAl alloys was investigated. The results show that Nb element dissolves into the matrix by diffusion. Pore nests are formed in situ after Nb ...Diffusion behavior of Nb in elemental powder metallurgy high Nb containing TiAl alloys was investigated. The results show that Nb element dissolves into the matrix by diffusion. Pore nests are formed in situ after Nb diffusion. With the increase in hot pressing temperature, the diffusion of Nb will be more sufficient, and the microstructure is more homogeneous. Nb element diffuses completely at 1400℃. Meanwhile, compression deformation and agglomeration phenomena of pores are observed in some pore nests. Hot isostatic pressing (HIP) treatment can only efficiently decrease but not eliminate porosity completely.展开更多
Gam matitanium aluminide ( γ TiAl) alloys are emerging as a revolutionary engineeringmaterialsfor hightemperaturestructuralapplications. Onthebasisoftheinformation avail ablein the public domain, this paper discuss...Gam matitanium aluminide ( γ TiAl) alloys are emerging as a revolutionary engineeringmaterialsfor hightemperaturestructuralapplications. Onthebasisoftheinformation avail ablein the public domain, this paper discussesthe historical background,status and future prospect of gam maalloytechnologyintheareasofalloy development/ design,processdevelop ment, and applications.展开更多
Ferrotitanium alloy polymer films, prepared by a simple technique of casting aqueous solutions of poly(vinyl alcohol) PVA containing ferrotitanium alloy on a horizontal glass plate, are useful as routine high-dose dos...Ferrotitanium alloy polymer films, prepared by a simple technique of casting aqueous solutions of poly(vinyl alcohol) PVA containing ferrotitanium alloy on a horizontal glass plate, are useful as routine high-dose dosimeters. These flexible plastic film dosimeters have pale yellow color, are bleached when exposed to gamma rays. The chemical composition of alloy was determined by EDX, and structure of alloy was determined by XRD. The response of these dosimeters depends on the concentration of alloy. The energy band gap Eg was calculated and the effect of gamma radiation on its value was determined. The optical absorption spectra showed that the absorption mechanism is an indirect allowed transition which found that energy band gap Eg decreases after irradiation. The response of these films has negligible humidity effects on the range of relative humidity from 0 to 100%. And also, it exhibits good preand post-irradiation stability in dark and light.展开更多
A part of Al-Ti-Mo-Cr quaternary phase diagram is constructed for themicrostructure control of D0_(22)-Al_3Ti or its derivative, L1_2-(Al,Cr)_3Ti, -based alloys. It wasfound that quaternary bcc phase equilibrates with...A part of Al-Ti-Mo-Cr quaternary phase diagram is constructed for themicrostructure control of D0_(22)-Al_3Ti or its derivative, L1_2-(Al,Cr)_3Ti, -based alloys. It wasfound that quaternary bcc phase equilibrates with either D0_(22)-Al_3Ti or L1_2-(Al,Cr)_3Ti, orboth, exist in large compositional areas. The mechanical properties is strongly affected byprecipitates appearing, and presumably alloy microstructures.展开更多
Based on the analyses of the microstructures and phase diagrams of the TiAl-based alloy, the relationship among the composition, structure and mechanical properties of the B2-containing y-TiAI alloys was reviewed. The...Based on the analyses of the microstructures and phase diagrams of the TiAl-based alloy, the relationship among the composition, structure and mechanical properties of the B2-containing y-TiAI alloys was reviewed. The refinement of microstructures and improvement of mechanical properties of TiA1 alloy through stabilization of the β/B2 phase were reviewed. The mechanism of the superplastic behavior of the B2-containing y-TiAI alloys was discussed. With a reasonable addition of β-stabilizer, metastable B2 phase can be maintained, which is favorable for fine-grained structure and better high-temperature deformation behaviors. The mechanical properties of the B2-containing TiAI alloy, including the deformability and elevated temperature properties, can also be improved with doping elements and subsequent hot-working processes. The above mentioned researches discuss a new way for developing TiAI alloys with comprehensive properties, including good deformability and creep resistance.展开更多
Effect of thermal stabilization on the microstructure and mechanical property of directionally solidified Ti-46Al-0.5W-0.5Si (mole fraction, %) alloy was investigated. The specimens were thermal stabilized for diffe...Effect of thermal stabilization on the microstructure and mechanical property of directionally solidified Ti-46Al-0.5W-0.5Si (mole fraction, %) alloy was investigated. The specimens were thermal stabilized for different time (t) and directionally solidified at a constant growth rate of 30 μm/s and temperature gradient of 20 K/mm. Dependencies of the primary dendritic spacing (λ1), secondary dendritic spacing (λ2), interlamellar spacing (λL) and microhardness (HV) on holding time were determined. The values of the λ1, λ2 and λL increase with the increase of t, and the value of HV decreases with the increase of t. The increase of t is helpful to obtain a good directional solidification structure. However, it reduces the mechanical property of the directionally solidified TiAl alloy. The optimized value of t is about 30 min.展开更多
文摘The aged and quenched microstructures of both alloys, Ti-42at-%Al and Ti-45at -%Al,homogenized in the disordered single phase field. were investigated And the results show that the quinched microstructure is a supersaturated single phase of ordered 22. When the supersaturated phase is aged in the two phase range at 1273 and 1373 K, it will transform to a lamellar microstructure of γ+α2. with a discontinuous decomposition mechanism in Ti-42at-%Al alloy and a semicontinuous decomposition mechanism in T1-45at-%Al alloy. With the methods of quantitative metallograph examination and X-ray diffraction analysis. the relationship between the amount of γ, phase precipitation and the time of isothermal transformation is agreed
基金Project (51001040) supported by the National Natural Science Foundation of ChinaProject (HITQNJS.2009.022) supported by Development Program for Outstanding Young Teachers in Harbin Institute of Technology, China
文摘A fine-grained TiAl alloy with a composition of Ti-45Al-2Cr-2Nb-1B-0.5Ta-0.225Y (mole fraction, %) was prepared by double mechanical milling(DMM) and spark plasma sintering(SPS). The relationship among sintering temperature, microstructure and mechanical properties was studied. The results show that the morphology of double mechanical milled powder is regular with size in the range of 20-40 μm and mainly composed of TiAl and Ti3Al phases. The main phase TiAl and few phases Ti3Al, Ti2Al and TiB2 were observed in the SPSed alloys. For samples sintered at 900 ℃ the equiaxed crystal grain microstructure is achieved with size in the range of 100-200 nm. With increasing the SPS temperature from 900 ℃to 1000 ℃ the size of equiaxed crystal grain obviously increases, the microhardness decreases from HV658 to HV616, and the bending strength decreases from 781 MPa to 652 MPa. In the meantime, the compression fracture strength also decreases from 2769 MPa to 2669 MPa, and the strain to fracture in compression increases from 11.69% to 17.76%. On the base of analysis of fractographies, it shows that the compression fracture transform of the SPSed alloys is intergranular rupture.
文摘The effects of a new technology, multi-step thermo-mechanical treatment, on the microstructure, deformation substructure and mechanical properties at ambient and elevated tempemture of can-forged Ti-33 Al-3 Cr-0.5Mo (wt%) Alloy were investigated.The results show that, after multi-step thermo-mechanical treatment of can-forged specimens, homogeneous, fine microstructures can be obtained in the whole TiAl-based alloy specimens. Furthermore, the specimen with homogeneous and fine full lamellae microstructure demonstrutes excellent comprehensive mechanical properties at ambient and elevated temperature.
基金financially supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant Nos.HEUCFP 201731 and 201719)
文摘Three novel multi-microalloying TiAl-based alloys containing high Nb were designed and fabricated Thermogravimetric method was applied to investigate the influence of Cr on the oxidation behavior of high Nb TiAl alloy at 1,073 K for 200 h in laboratory air. The 2 at.% and 4 at.% Cr were added into the alloy,(respectivel named 2 Cr and 4 Cr compared to the Cr-free ternary alloy, 0 Cr alloy). The alloys' microstructure and compositio as well as the composition distribution of the oxidation scale were analyzed by means of Scanning Electro Microscopy(SEM), Energy Dispersive Spectroscopy(EDS), and X-Ray Diffractometry(XRD). The results show that the addition of Cr decreases the grain size of the Nb-TiAl alloy and leads to a transformation from a full lamellar structure to a nearly fully lamellar structure. When oxidized at 1,073 K for 200 h, the oxidized mass gai of the alloy increases with an increase in Cr addition amount in the first 100 h and decreases in the last 100 h With the increase of Cr content, the oxidation surface turns compact but uneven in morphology, which may affec the oxidation resistance of the alloy by increasing the peeling off risk of the oxidation layer at friction conditions.
文摘Unbalanced properties for both fine-grained gamma and coarse-grained lamellar microstructures typically produced in gamma alloys are described. Efforts for the improvements are reviewed along with some experimental results. Empirical improvements have been made in cast alloys, which have led gamma alloys to a viable materials technology and to the development of various application areas for gas turbine engines as well as automotive engines. Efforts to understand fundamental and applied aspects leading to the improvements are assessed for wrought alloys. Optimization of microstructures through process control,innovative heat treatments, alloy chemistry modification and their combinations have progressed in the endeavor. Similar efforts have just begun for cast alloys where work on fundamental understanding has been lagging. Future directions are suggested for further improvements and predicted for the development of higher temperature/performance alloys.
基金the National Natural Science Foundation of China (Project 59895150) and the National Advanced Materials Committee (Project 7
文摘TiAI-based alloys with various compositions (including Ti-48Al, Ti-47Al-2Cr-2Nb, Ti-47Al-2Cr-2Nb-0.2B and Ti-47Al-3Cr, in mole fraction) had been prepared by elemental powder metallurgy (EPM). The results have shown that the density of the prepared Ti-48AI alloy increases with increasing hot pressing temperature up to 1300℃. The Ti-48AI alloy microstructure mainly consisted of island-like Ti3Al phase and TiAl matrix at hot pressing temperature below 1300℃, however, coarse α2/γ lamellar colonies and γ grains appeared at 1400℃. It has also indicated that the additions of elemental Cr and B can refine the alloy microstructure. The main microstructural inhomogeneity in EPM TiAI-based alloys was the island-like α2 phase or the aggregate of α2/γ lamellar colony, and such island-like structure will be inherited during subsequent heat treatment in (α+γ) field. Only after heat treatment in a field would this structure be eliminated. The mechanical properties of EPM TiAl-based alloys with various compositions were tested, and the effect of alloy elements on the mechanical properties was closely related to that of alloy elements on the alloy microstructures. Based on the above results, TiAI-based alloy exhaust valves were fabricated by elemental powder metallurgy and diffusion joining. The automobile engine test had demonstrated that the performance of the manufactured valves was very promising for engine service.
文摘The analysis of the microstructural characterization and phase composition of electron beam welded joint zones of Ti- 43Al-9V-O. 3Y alloy has been done in this study. The welded seam is mainly composed of B2 phase, the partial γ + α2 twophase lamellar structure and granular γm phase. And the lanthanon Y existed as YAl2 phase and served as grain refined. The impact of different cooling rates on joint microstructure, fracture characteristic and tensile strength were investigated. The high cooling rate restrained the structural transformation and resulted in the ordering structure. The fracture of the joint was brittle cleavage fracture because the ordering structure went against restraining the crack propagation. With the decrease of cooling rate, the transformation amounts of lamellar structure increased, and the fracture presented the layered and crosslayered characteristic.
文摘The Ti-48Al alloy was pack siliconized with 15%Si+85%Al2O3. The microstructure of the siliconized coating on the TiAl-based alloy was analyzed and its effect on oxidation resistance was investigated. The specimens before and after cycle oxidation were examined by XRD and SEM equipped with XEDS. The results showed that the coating is composed of a thin Al2O3 outer layer and a composite inner layer of Ti5Si3 with an appropriate amount of Al2O3 dispersed in. Cycle oxidation tests showed that the high temperature oxidation resistance of TiAl-based alloy was greatly improved by forming such composite coating. No spaliation and crack happened and the weight gain was very small after cycle oxidation at 900℃ for 314h.
基金National Natural Science Foundation of China (90405016)
文摘The TiAl-based laminated composite sheet of 150 mm × 100 mm × 0.2 mm, with 24 TiAl layers and 23 Nb layers laid alternately one on another, was successfully fabricated using the electron beam-physical vapor deposition (EB-PVD) method. The microstructure and properties of the sheet were investigated on an atomic force microscope (AFM), a scanning electron microscope (SEM) and a tensile testing machine. The results indicate that the evenly distributed Nb layers are well joined with the TiAl layers, and the interfaces between layers are transparent, and every interlayer spacing is of about 8μm. The fractures appear to be a mixture of intergranular fractures and somewhat ductile quasi-cleavage ones. Despite its slight influence on ultimate tensile strength, the inserts of Nb layers efficiently increase the room temperature ductility of TiAl-based alloys due to the crack deflection effect.
基金This research was financially supported by the National Natural Science Foundation of China (No.50771013)the Key Grant Project of the Ministry of Education of China(No.704008)the Program for New Century Excellent Talents in Universities (No.NCET-04-01017).
文摘The effect of heat treatment on the microstructure evolution of a high Nb containing TiAl alloy has been studied. The results indicate that β-segregation, β-segregation and S-segregation in the as-cast and as-forged alloys can be effectively eliminated at the temperature above Tα (1350-1400℃) for long holding time (12-24 h) and the full lamellar (FL) microstructure is gained. For the two alloys, the lamellar colony sizes are 120 μm and 2000 μm, respectively after heat treatment at 1400℃ for 12 h. Meanwhile, the sizes are 210 μm and 3000 μm, respectively at 1350℃ for 24 h. To get a fine homogenous microstructure, the primary as-cast alloy is first subjected to preheat treatment for eliminating the segregations. After the preheat treatment, the ailoy is processed by the multi-step canned forging to attain the microstructure with fine grain size.
基金the National Natural Science Foundation of China(Grant Nos.51825401,51971121,52001114)the Scientific Research Fund of State Key Laboratory of Materials Processing and Die&Mould Technology(Grant No.P2020-023)Henan Provincial Department of Science and Technology Research Project(Grant No.182102110096)。
文摘In order to improve mechanical properties of TiAlNb alloys,different contents of silicon were added into Ti48Al6Nb alloy.The Ti48Al6NbxSi (x=0,0.1,0.2,0.3,0.4 and 0.5,at.%) alloys were prepared by vacuum arc melting.The phase constitution,microstructure evolution and mechanical properties of the alloys were studied.Results show that the Ti48Al6NbxSi alloys consist of γ-TiAl phase,α2-Ti3Al phase and B2 phase,and Ti5Si3 silicide phase is formed when the addition of silicon is higher than 0.3at.%.The addition of silicon leads to the decrease in γ phase and increase in α2 phase.The formation of silicide decreases the amount of Nb dissolved in the TiAl matrix,and therefore decreases B2 phase.Compressive tests show that the ultimate strength of the alloys increases from 2,063 MPa to 2,281 MPa with an increase in silicon from 0 to 0.5at.%,while the fracture strain decreases from 34.7% to 30.8%.The increase of compressive strength and decrease of fracture strain can be attributed to the decrease of B2 phase and the formation of Ti5Si3 phase by the addition of silicon.The strengthening mechanism is changed from solid solution strengthening when the addition of silicon is less than 0.3at.% to combination of solid solution strengthening and secondary phase strengthening when the addition of silicon is higher than 0.3at.%.
基金This work is financially supported by the Key Grant Project of Chinese Ministry of Education (No. 704008) and by the Program from New Century Excellent Talents in University, China (No. NCET-04-01017).
文摘Diffusion behavior of Nb in elemental powder metallurgy high Nb containing TiAl alloys was investigated. The results show that Nb element dissolves into the matrix by diffusion. Pore nests are formed in situ after Nb diffusion. With the increase in hot pressing temperature, the diffusion of Nb will be more sufficient, and the microstructure is more homogeneous. Nb element diffuses completely at 1400℃. Meanwhile, compression deformation and agglomeration phenomena of pores are observed in some pore nests. Hot isostatic pressing (HIP) treatment can only efficiently decrease but not eliminate porosity completely.
文摘Gam matitanium aluminide ( γ TiAl) alloys are emerging as a revolutionary engineeringmaterialsfor hightemperaturestructuralapplications. Onthebasisoftheinformation avail ablein the public domain, this paper discussesthe historical background,status and future prospect of gam maalloytechnologyintheareasofalloy development/ design,processdevelop ment, and applications.
文摘Ferrotitanium alloy polymer films, prepared by a simple technique of casting aqueous solutions of poly(vinyl alcohol) PVA containing ferrotitanium alloy on a horizontal glass plate, are useful as routine high-dose dosimeters. These flexible plastic film dosimeters have pale yellow color, are bleached when exposed to gamma rays. The chemical composition of alloy was determined by EDX, and structure of alloy was determined by XRD. The response of these dosimeters depends on the concentration of alloy. The energy band gap Eg was calculated and the effect of gamma radiation on its value was determined. The optical absorption spectra showed that the absorption mechanism is an indirect allowed transition which found that energy band gap Eg decreases after irradiation. The response of these films has negligible humidity effects on the range of relative humidity from 0 to 100%. And also, it exhibits good preand post-irradiation stability in dark and light.
文摘A part of Al-Ti-Mo-Cr quaternary phase diagram is constructed for themicrostructure control of D0_(22)-Al_3Ti or its derivative, L1_2-(Al,Cr)_3Ti, -based alloys. It wasfound that quaternary bcc phase equilibrates with either D0_(22)-Al_3Ti or L1_2-(Al,Cr)_3Ti, orboth, exist in large compositional areas. The mechanical properties is strongly affected byprecipitates appearing, and presumably alloy microstructures.
基金Project (2011CB605505) supported by the National Basic Research Program of ChinaProject (2011JQ002) supported by the Fundamental Research Funds for the Central Universities, China
文摘Based on the analyses of the microstructures and phase diagrams of the TiAl-based alloy, the relationship among the composition, structure and mechanical properties of the B2-containing y-TiAI alloys was reviewed. The refinement of microstructures and improvement of mechanical properties of TiA1 alloy through stabilization of the β/B2 phase were reviewed. The mechanism of the superplastic behavior of the B2-containing y-TiAI alloys was discussed. With a reasonable addition of β-stabilizer, metastable B2 phase can be maintained, which is favorable for fine-grained structure and better high-temperature deformation behaviors. The mechanical properties of the B2-containing TiAI alloy, including the deformability and elevated temperature properties, can also be improved with doping elements and subsequent hot-working processes. The above mentioned researches discuss a new way for developing TiAI alloys with comprehensive properties, including good deformability and creep resistance.
基金Projects (50801019, 51071062, 50771041) supported by the National Natural Science Foundation of ChinaProject (2011CB605504) supported by the National Basic Research Program of China
文摘Effect of thermal stabilization on the microstructure and mechanical property of directionally solidified Ti-46Al-0.5W-0.5Si (mole fraction, %) alloy was investigated. The specimens were thermal stabilized for different time (t) and directionally solidified at a constant growth rate of 30 μm/s and temperature gradient of 20 K/mm. Dependencies of the primary dendritic spacing (λ1), secondary dendritic spacing (λ2), interlamellar spacing (λL) and microhardness (HV) on holding time were determined. The values of the λ1, λ2 and λL increase with the increase of t, and the value of HV decreases with the increase of t. The increase of t is helpful to obtain a good directional solidification structure. However, it reduces the mechanical property of the directionally solidified TiAl alloy. The optimized value of t is about 30 min.