期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Optimization Design for Fixed Table of Gantry Machining Center Based on Sensitivity and Topology Analyses 被引量:3
1
作者 郑彬 殷国富 +2 位作者 黄辉 陈强 方辉 《Journal of Donghua University(English Edition)》 EI CAS 2013年第4期263-268,共6页
In order to decrease the deformation and stress and increase the natural frequency of the fixed table,a method of optimization driven by the sensitivity and topology analyses is proposed.The finite element model of th... In order to decrease the deformation and stress and increase the natural frequency of the fixed table,a method of optimization driven by the sensitivity and topology analyses is proposed.The finite element model of the fixed table is constructed and analyzed by using ANSYS software.Based on the results of static analysis and modal analysis,the maximum deformation,the maximum stress,and natural frequencies are obtained.Then,the sensitivity analysis and topology optimization are carried out to find out the parameters to be optimized.The fixed table is reconstructed according to optimal design scheme.In the comparison of the results between original model and the optimized one,the maximum deformation and stress are decreased by 71.73%and 60.27%respectively.At the same time,the natural frequencies from the first mode to the sixth mode are increased by 30.28%,29.57%,29.51%,31.52%,22.19%,and 21.80%,respectively.The method can provide technology guide for the design and optimization of machining structure. 展开更多
关键词 gantry machining center sensitivity analysis topology optimization optimization design fixed tableCLC number:TG502Document code:AArticle ID:1672-5220(2013)04-0263-06
下载PDF
Structure Improvement and Optimization of Gantry Milling System for Complex Boring and Milling Machining Center
2
作者 Zhongxin Zang Qilin Shu 《Journal of Electronic Research and Application》 2023年第5期1-7,共7页
To enhance the efficiency and machining precision of the TX1600G complex boring and milling machining center,a study was conducted on the structure of its gantry milling system.This study aimed to mitigate the influen... To enhance the efficiency and machining precision of the TX1600G complex boring and milling machining center,a study was conducted on the structure of its gantry milling system.This study aimed to mitigate the influence of factors such as structural quality,natural frequency,and stiffness.The approach employed for this investigation involved mechanism topology optimization.To initiate this process,a finite element model of the gantry milling system structure was established.Subsequently,an objective function,comprising strain energy and modal eigenvalues,was synthesized.This objective function was optimized through multi-objective topology optimization,taking into account certain mass fraction constraints and considering various factors,including processing technology.The ultimate goal of this optimization was to create a gantry milling structure that exhibited high levels of dynamic and static stiffness,a superior natural frequency,and reduced mass.To validate the effectiveness of these topology optimization results,a comparison was made between the new and previous structures.The findings of this study serve as a valuable reference for optimizing the structure of other components within the machining center. 展开更多
关键词 machining center gantry milling system structure Natural frequency STIFFNESS Multi-objective topology optimization
下载PDF
Finite Element Analysis and Optimal Design Based on ANSYS in a XH2408 Gantry Style NC Machining Center 被引量:3
3
作者 WEI Feng-tao ZHAO Jian-feng SONG Li 《International Journal of Plant Engineering and Management》 2010年第3期188-192,共5页
ANSYS, the software of construction analysis, is used to analyze static and dynamic performances of a XH2408 gantry style numerical control (NC) milling machining center and optimize its construction using the finit... ANSYS, the software of construction analysis, is used to analyze static and dynamic performances of a XH2408 gantry style numerical control (NC) milling machining center and optimize its construction using the finite element method. First, a finite element model is established and the static and dynamic analysis are completed as constraints and loads applied on the finite element model. It is found that both spindle box and gantry are the worst components of assembly in performance. Secondly, the spindle box and gantry are chosen as objects of optimal design separately, aiming to improve their performance. The optimal plans are accomplished on the basis of the minimum volume for the spindle box and the maximum inherent frequency for the gantry subject to the constrains. Finally, the machine tool improved is analyzed statically and dynamically based on the optimal results of the spindle box and gantry. The results show that optimal design with the finite element method increases static and dynamical performances of the XH2408 gantry style numerical control milling machining center and the technique is effective and practical in engineering applications. 展开更多
关键词 gantry style machining center finite element method ANSYS optimal design
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部