期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Multistring analysis of wellhead movement and uncemented casing strength in offshore oil and gas wells 被引量:7
1
作者 Liu Xiuquan Chen Guoming +3 位作者 Chang Yuanjiang Zhang Lei Zhang Weiguo Xie Hua 《Petroleum Science》 SCIE CAS CSCD 2014年第1期131-138,共8页
This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include o... This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include operating load during drilling and completion and the temperature field,pressure field and the end effect of pressure during gas production.The finite element method for multistring analysis is developed to simulate random contact between casings.The relevant finite element analysis scheme is also presented according to the actual procedures of drilling,completion and gas production.Finally,field cases are presented and analyzed using the proposed methods.These are four offshore wells in the South China Sea.The calculated wellhead growths during gas production are compared with measured values.The results show that the wellhead subsides during drilling and completion and grows up during gas production.The theoretical and finite element solutions for wellhead growth are in good agreement with measured values and the deviations of calculation are within 10%.The maximum von Mises stress on the uncemented intermediate casing occurs during the running of the oil tube.The maximum von Mises stress on the uncemented production casing,calculated with the theoretical method occurs at removing the blow-out-preventer (BOP) while that calculated with the finite element method occurs at gas production.Finite element solutions for von Mises stress are recommended and the uncemented casings of four wells satisfy strength requirements. 展开更多
关键词 Offshore oil and gas wells drilling and completion gas production wellhead movement uncemented casing strength gap element
下载PDF
Theoretical calculation and experimental study on the load distribution coefficient (LDC) of three-ring gear reducer 被引量:1
2
作者 梁永生 李华敏 李瑰贤 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第6期748-752,共5页
In this paper, primary manufacturing and assembling errors of three-ring gear reducer (TRGR) are analyzed. TRGR is a new transmission type whose eccentric phase difference between middle ring plate and side ring pla... In this paper, primary manufacturing and assembling errors of three-ring gear reducer (TRGR) are analyzed. TRGR is a new transmission type whose eccentric phase difference between middle ring plate and side ring plates is 120°, Its mass of middle ring plate is equal to that of side ring plate or 180°, and its inass of middle ring plate is twice of that of side ring plate, which affects load distribution between ring plates. The primary manufacturing and assembling errors include eccentric error of eccentric sheath E111, internal gear plate E1 and output external gear E11. A new theoretical method is presented in this paper, which converts load on ring plates into the dedendum bending stress of ring plate to calculate load distribution coefficient ( LDC ), by means of gap element method (GEM), one of finite element method (FEM). The theoretical calculation and experimental study, which measures ring plate dedendum bending stress by means of sticking strain gauges on the dedendum of middle ring plate internal gear and side ring plate internal gears, are presented. The theoretical calculation and comparison with experiment result of LDC are implemented an two kinds of three-ring gear reducers whose eccentric phase difference between eccentric sheaths is 120° and 180°respectively. The research indicates that the result of theoretical calculation is consistent with that of experimental study. That is to say, the theoretical calculation method is feasible. 展开更多
关键词 three-ring gear reducer (TRGR) load distribution coefficient (LDC) finite element method (FEM) gap element method (GEM)
下载PDF
Elastic and Inelastic Response of Structural Systems in Seismic Pounding
3
作者 N. U. Mate S. V. Bakre +1 位作者 O. R. Jaiswal K. K. Sayyad 《Open Journal of Civil Engineering》 2016年第1期50-73,共24页
The present paper addresses the comparative study of three adjacent single-degree-of freedom structures for elastic and inelastic system with and without pounding under seismic excitations. For the gap between three a... The present paper addresses the comparative study of three adjacent single-degree-of freedom structures for elastic and inelastic system with and without pounding under seismic excitations. For the gap between three adjacent structures, the simulation is done by using linear spring element without damping. The entire numerical simulation is done in time domain by considering the inputs of four real ground motions. The results of the study show that the response of elastic system is much different to that of response of inelastic system in the absence and presence of pounding, especially in lighter or more flexible structures. Elastic structures show much severe pounding response than inelastic structures. Modeling of colliding structures behaving inelastically is really needed in order to obtain the accurate structural pounding involved response under seismic excitation. 展开更多
关键词 Seismic Pounding gap Element MDOF Elastic and Inelastic Stick System Time History Analysis Spectral Acceleration Response
下载PDF
Time-domain Spectral Finite Element Method for Wave Propagation Analysis in Structures with Breathing Cracks 被引量:4
4
作者 Zexing Yu Chao Xu +2 位作者 Fei Du Shancheng Cao Liaiigxian Gu 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2020年第6期812-822,共11页
Guided waves are generally considered as a powerful approach for crack detection in structures,which are commonly investigated using the finite element method(FEM).However,the traditional FEM has many disadvantages in... Guided waves are generally considered as a powerful approach for crack detection in structures,which are commonly investigated using the finite element method(FEM).However,the traditional FEM has many disadvantages in solving wave propagation due to the strict requirement of mesh density.To tackle this issue,this paper proposes an efficient time-domain spectral finite element method(SFEM)to analyze wave propagation in cracked structures,in which the breathing crack is modeled by definiiig the spectral gap element.Moreover,novel orthogonal polynomials and Gauss-Lobatto-Legendre quadrature rules are adopted to construct the spectral element.Meanwhile,a separable hard contact is utilized to simulate the breathing behavior.Finally,a comparison of the numerical results between the FEM and the SFEM is conducted to demonstrate the high efficiency and accuracy of the proposed method.Based on the developed SFEM,the nonlinear features of waves and influence of the incident mode are also studied in detail,which provides a helpful guide for a physical understanding of the wave propagation behavior in structures with breathing cracks. 展开更多
关键词 Time-domain spectral finite element method Contact nonlinearity gap element Breathing crack
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部