General anesthetics induce loss of consciousness by inhibiting ascending arousal pathways, and they interfere with gap junction electrical coupling. The present study aimed to determine whether inhibition of gap junct...General anesthetics induce loss of consciousness by inhibiting ascending arousal pathways, and they interfere with gap junction electrical coupling. The present study aimed to determine whether inhibition of gap junction-mediated signaling could influence general anesthetic-induced loss of consciousness. The general anesthetics sevoflurane and propofol were used. Intracerebroventricular administration of carbenoxolone, a gap junction blocker, significantly decreased the time to loss of the righting reflex (P 0.05), but prolonged the time to recovery of the reflex (P 0.05). Moreover, intracerebroventricular administration of carbenoxolone increased the sensitivity to sevoflurane, with a leftward shift of the loss of righting reflex dose-response curve, and decreased the 50% effective concentration of sevoflurane. These results suggest that the gap junction blocker carbenoxolone enhances propofol and sevoflurane-mediated general anesthesia.展开更多
Objective This review discusses the experimental and clinical studies those show the expression of connexin 36 in the central nervous system and the possible role of connexin 36 in epileptic seizure. Data sources All ...Objective This review discusses the experimental and clinical studies those show the expression of connexin 36 in the central nervous system and the possible role of connexin 36 in epileptic seizure. Data sources All articles used in this review were mainly searched from PubMed published in English from 1996 to 2012. Study selection Original articles and reviews were selected if they were related to the expression of connexin 36 in the central nervous system and its role in epilepsy. Results The distribution of connexin 36 is developmentally regulated, cell-specific and region-specific. Connexin 36 is involved in some neuronal functions and epileptic synchronization. Changes in the connexin 36 gene and protein were accompanied by seizures. Selective gap junction blockers have exerted anticonvulsant actions in a variety of experiments examined in both humans and experimental animals. Conclusions Connexin 36 plays an important role in both physiological and pathological conditions in the central nervous system. A better understanding of the role of connexin 36 in seizure activity may contribute to the development of new therapeutic approaches to treating epilepsy.展开更多
基金supported by the Natural Science Foundation of Hubei Province, No. 2010CHB01001
文摘General anesthetics induce loss of consciousness by inhibiting ascending arousal pathways, and they interfere with gap junction electrical coupling. The present study aimed to determine whether inhibition of gap junction-mediated signaling could influence general anesthetic-induced loss of consciousness. The general anesthetics sevoflurane and propofol were used. Intracerebroventricular administration of carbenoxolone, a gap junction blocker, significantly decreased the time to loss of the righting reflex (P 0.05), but prolonged the time to recovery of the reflex (P 0.05). Moreover, intracerebroventricular administration of carbenoxolone increased the sensitivity to sevoflurane, with a leftward shift of the loss of righting reflex dose-response curve, and decreased the 50% effective concentration of sevoflurane. These results suggest that the gap junction blocker carbenoxolone enhances propofol and sevoflurane-mediated general anesthesia.
基金This study was supported by a grant of the National Natural Science Foundation of China (No. 30971534).
文摘Objective This review discusses the experimental and clinical studies those show the expression of connexin 36 in the central nervous system and the possible role of connexin 36 in epileptic seizure. Data sources All articles used in this review were mainly searched from PubMed published in English from 1996 to 2012. Study selection Original articles and reviews were selected if they were related to the expression of connexin 36 in the central nervous system and its role in epilepsy. Results The distribution of connexin 36 is developmentally regulated, cell-specific and region-specific. Connexin 36 is involved in some neuronal functions and epileptic synchronization. Changes in the connexin 36 gene and protein were accompanied by seizures. Selective gap junction blockers have exerted anticonvulsant actions in a variety of experiments examined in both humans and experimental animals. Conclusions Connexin 36 plays an important role in both physiological and pathological conditions in the central nervous system. A better understanding of the role of connexin 36 in seizure activity may contribute to the development of new therapeutic approaches to treating epilepsy.