In this paper, the numerical computation of resonant frequency of the two gap-coupled circular microstrip patch antenna loaded with shorting post by using cavity model is presented. The numerically computed results ar...In this paper, the numerical computation of resonant frequency of the two gap-coupled circular microstrip patch antenna loaded with shorting post by using cavity model is presented. The numerically computed results are compared with simulated results. The two gap-coupled circular microstrip patch antenna loaded with shorting post miniaturize the cross-sectional dimension of the radiating patch at the microwave frequency, which is useful for short range communications or contactless identification systems. The simulation has been performed using method-of-moments based commercially available simulator IE3D.展开更多
<div style="text-align:justify;"> A novel method for tri-band microstrip array antenna with improvement in the bandwidth by incorporating wide slots and additional resonators which is gap-coupled to th...<div style="text-align:justify;"> A novel method for tri-band microstrip array antenna with improvement in the bandwidth by incorporating wide slots and additional resonators which is gap-coupled to the non-radiating edges of a radiating element is presented. The experimental results show that two element slot-loaded gap-coupled microstrip array antenna gives a ?10 dB return loss band-width for three bands. The design specifications, radiation patterns and gain of the proposed antennas are presented and described. </div>展开更多
In this paper, an analytical model for computing the resonant frequency of the gap-coupled ring microstrip patch antennas is developed. The analytical model is based upon the cavity model along with circuit theory. Us...In this paper, an analytical model for computing the resonant frequency of the gap-coupled ring microstrip patch antennas is developed. The analytical model is based upon the cavity model along with circuit theory. Using the field expressions and boundary conditions, the transcendental equation for the structure is developed. The analytically computed results are compared with the simulated results. The simulation work is carried out by using computer simulation technology(CST) microwave studio simulator.The comparison between simulated and computed results shows good agreement.展开更多
文摘In this paper, the numerical computation of resonant frequency of the two gap-coupled circular microstrip patch antenna loaded with shorting post by using cavity model is presented. The numerically computed results are compared with simulated results. The two gap-coupled circular microstrip patch antenna loaded with shorting post miniaturize the cross-sectional dimension of the radiating patch at the microwave frequency, which is useful for short range communications or contactless identification systems. The simulation has been performed using method-of-moments based commercially available simulator IE3D.
文摘<div style="text-align:justify;"> A novel method for tri-band microstrip array antenna with improvement in the bandwidth by incorporating wide slots and additional resonators which is gap-coupled to the non-radiating edges of a radiating element is presented. The experimental results show that two element slot-loaded gap-coupled microstrip array antenna gives a ?10 dB return loss band-width for three bands. The design specifications, radiation patterns and gain of the proposed antennas are presented and described. </div>
文摘In this paper, an analytical model for computing the resonant frequency of the gap-coupled ring microstrip patch antennas is developed. The analytical model is based upon the cavity model along with circuit theory. Using the field expressions and boundary conditions, the transcendental equation for the structure is developed. The analytically computed results are compared with the simulated results. The simulation work is carried out by using computer simulation technology(CST) microwave studio simulator.The comparison between simulated and computed results shows good agreement.