To tackle the problem of aquatic environment pollution,a vision-based autonomous underwater garbage cleaning robot has been developed in our laboratory.We propose a garbage detection method based on a modified YOLOv4,...To tackle the problem of aquatic environment pollution,a vision-based autonomous underwater garbage cleaning robot has been developed in our laboratory.We propose a garbage detection method based on a modified YOLOv4,allowing high-speed and high-precision object detection.Specifically,the YOLOv4 algorithm is chosen as a basic neural network framework to perform object detection.With the purpose of further improvement on the detection accuracy,YOLOv4 is transformed into a four-scale detection method.To improve the detection speed,model pruning is applied to the new model.By virtue of the improved detection methods,the robot can collect garbage autonomously.The detection speed is up to 66.67 frames/s with a mean average precision(mAP)of 95.099%,and experimental results demonstrate that both the detection speed and the accuracy of the improved YOLOv4 are excellent.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61725305,U1909206,T2121002,and62073196)the Postdoctoral Innovative Talent Support Program(No.BX2021010)the S&T Program of Hebei Province,China(No.F2020203037)。
文摘To tackle the problem of aquatic environment pollution,a vision-based autonomous underwater garbage cleaning robot has been developed in our laboratory.We propose a garbage detection method based on a modified YOLOv4,allowing high-speed and high-precision object detection.Specifically,the YOLOv4 algorithm is chosen as a basic neural network framework to perform object detection.With the purpose of further improvement on the detection accuracy,YOLOv4 is transformed into a four-scale detection method.To improve the detection speed,model pruning is applied to the new model.By virtue of the improved detection methods,the robot can collect garbage autonomously.The detection speed is up to 66.67 frames/s with a mean average precision(mAP)of 95.099%,and experimental results demonstrate that both the detection speed and the accuracy of the improved YOLOv4 are excellent.