期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Norwegian oil and gas storage in rock caverns-Technology based on experience from hydropower development 被引量:2
1
作者 Bjørn Nilsen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第2期479-486,共8页
Underground storage in rock caverns is widely used in Norway for many different petroleum products,such as crude oil,fuel,propane and butane.Basically,the caverns for such storages are unlined,i.e.containment is ensur... Underground storage in rock caverns is widely used in Norway for many different petroleum products,such as crude oil,fuel,propane and butane.Basically,the caverns for such storages are unlined,i.e.containment is ensured without using any steel lining or membrane.The main basis for the storage technology originates from the extensive hydropower development in Norway.As part of this activity,about 4500 km of tunnels and shafts have been excavated,and around 200 large powerhouse caverns have been constructed.The hydropower tunnels are mainly unlined,with hydrostatic water pressure on unlined rock of up to 1000 m.Some of the projects also include air cushion chambers with volumes of up to 1×10^(5)m^(3)and air pressure up to 7.7 MPa.Many lessons which are valuable also for underground oil and gas storage have been learnt from these projects.For a storage project to become successful,systematic,well planned design and ground investigation procedures are crucial.The main steps of the design procedure are first to define the optimum location of the project,and then to optimize orientation,shape/geometry and dimensions of caverns and tunnels.As part of the procedure,ground investigations have to be carried out at several steps integrated with the progress of design.The investigation and design procedures,and the great significance of these for the project to become successful will be discussed.Case examples of oil and gas storage in unlined rock caverns are given,illustrating the relevancy of experience from high-pressure hydropower projects for planning and design of unlined caverns for oil and gas storage. 展开更多
关键词 Underground storage Oil gas Liquefied petroleum gas(lpg) HYDROPOWER Air cushion chamber
下载PDF
Explosion Hazard Analysis of Liquefied Petroleum Gas Transportation
2
作者 高思达 郝琳 +1 位作者 朱振兴 卫宏远 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第2期252-260,共9页
This paper presents a quantitative risk analysis of liquefied petroleum gas(LPG)transportation.An accident that happened on June 13,2020,on the highway near Wenling,China is studied as a case.In this accident,LPG carr... This paper presents a quantitative risk analysis of liquefied petroleum gas(LPG)transportation.An accident that happened on June 13,2020,on the highway near Wenling,China is studied as a case.In this accident,LPG carried by a tank truck on the highway leaked and caused a large explosion,which led to 20 deaths.Different methods are combined to calculate the consequence of the accident.Multi-energy model and rupture of vessel model are employed to calculate the overpressure;the simulation result of the multi-energy model is closer to the damage caused by the accident.The safety distances in accidents of LPG transport storage tanks of different capacities are calculated in this study;the results show that the damage of explosion will increase with the filling degree of the tank.Even though the filling degree is 90%(value required by law),the 99%fatality rate range will reach 42 m,which is higher than regulated distance between road and building.The social risk of the tank truck has also been calculated and the results show that the risk is not acceptable.The calculating method used in this study could evaluate the risk of LPG tanker more accurately,which may contribute to the establishment of transportation regulation so that losses from similar accidents in the future could be reduced. 展开更多
关键词 liquefied petroleum gas(lpg) quantitative risk analysis explosion consequence calculation
原文传递
Fatigue Analysis of Liquefied Petroleum Gas Cylinders for Safety Risk Assessment
3
作者 周峰 刘昊天 剌建凯 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第3期394-397,共4页
With the widespread application of liquefied petroleum gas (LPG),the safety of LPG cylinder has received more and more attention.For the safety of LPG cylinder,we conduct a safety risk assessment of cylinder using the... With the widespread application of liquefied petroleum gas (LPG),the safety of LPG cylinder has received more and more attention.For the safety of LPG cylinder,we conduct a safety risk assessment of cylinder using the failure mode and effect analysis (FMEA) method.Taking the most influential inflatable fatigue under normal conditions as the research object,we use FE-safe software to analyze the fatigue failure.The risk compliance coefficients of various failure modes are calculated and classified according to the risk level.In this way,the service life of the LPG cylinder weld is determined.The presented method improves the safety risk assessment process of LPG cylinder and provides a good theoretical and practical basis for similar pressure vessel risk assessment. 展开更多
关键词 liquefied petroleum gas(lpg)cylinder safety risk assessment failure mode and effect analysis(FMEA) fatigue analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部