The analytical mathematical solutions of gas concentration and fractional gas loss for the diffusion of gas in a cylindrical coal sample were given with detailed mathematical derivations by assuming that the diffusion...The analytical mathematical solutions of gas concentration and fractional gas loss for the diffusion of gas in a cylindrical coal sample were given with detailed mathematical derivations by assuming that the diffusion of gas through the coal matrix is concentration gradient-driven and obeys the Fick’s Second Law of Diffusion.The analytical solutions were approximated in case of small values of time and the error analyses associated with the approximation were also undertaken.The results indicate that the square root relationship of gas release in the early stage of desorption,which is widely used to provide a simple and fast estimation of the lost gas,is the first term of the approximation,and care must be taken in using the square root relationship as a significant error might be introduced with increase in the lost time and decrease in effective diameter of a cylindrical coal sample.展开更多
Flue gas fooding is one of the important technologies to improve oil recovery and achieve greenhouse gas storage.In order to study multicomponent fue gas storage capacity and enhanced oil recovery(EOR)performance of f...Flue gas fooding is one of the important technologies to improve oil recovery and achieve greenhouse gas storage.In order to study multicomponent fue gas storage capacity and enhanced oil recovery(EOR)performance of fue gas water-alternating gas(fue gas-WAG)injection after continuous waterfooding in an oil reservoir,a long core fooding system was built.The experimental results showed that the oil recovery factor of fue gas-WAG fooding was increased by 21.25%after continuous waterfooding and fue gas-WAG fooding could further enhance oil recovery and reduce water cut signifcantly.A novel material balance model based on storage mechanism was developed to estimate the multicomponent fue gas storage capacity and storage capacity of each component of fue gas in reservoir oil,water and as free gas in the post-waterfooding reservoir.The ultimate storage ratio of fue gas is 16%in the fue gas-WAG fooding process.The calculation results of fue gas storage capacity showed that the injection gas storage capacity mainly consists of N_(2) and CO_(2),only N_(2) exists as free gas phase in cores,and other components of injection gas are dissolved in oil and water.Finally,injection strategies from three perspectives for fue gas storage,EOR,and combination of fue gas storage and EOR were proposed,respectively.展开更多
The scaling of the flowfield in a gas gas combustion chamber is investigated theoretically, numerically and experimentally. To obtain the scaling criterion of the gas-gas combustion flowfield, formulation analysis of ...The scaling of the flowfield in a gas gas combustion chamber is investigated theoretically, numerically and experimentally. To obtain the scaling criterion of the gas-gas combustion flowfield, formulation analysis of the threedimensional (3D) Navier-Stokes equations for a gaseous multi-component mixing reaction flow is conducted and dimensional analysis on the gas gas combustion phenomena is also carried out. The criterion implies that the size and the pressure of the gas gas combustion chamber can be changed. Based on the criterion, multi-element injector chambers with different geometric sizes and at different chamber pressures ranging from 3 MPa to 20 MPa are numerically simulated. A multi-element injector chamber is designed and hot-fire tested at five chamber pressures from 1.64 MPa to 3.68 MPa. Wall temperature measurements are used to understand the similarity of combustion flowfields in the tests. The results have verified the similarities between combustion flowfields under different chamber pressures and geometries, with the criterion applied.展开更多
Estimating the intensity of outbursts of coal and gas is important as the intensity and frequency of outbursts of coal and gas tend to increase in deep mining. Fully understanding the major factors contributing to coa...Estimating the intensity of outbursts of coal and gas is important as the intensity and frequency of outbursts of coal and gas tend to increase in deep mining. Fully understanding the major factors contributing to coal and gas outbursts is significant in the evaluation of the intensity of the outburst. In this paper, we discuss the correlation between these major factors and the intensity of the outburst using Analysis of Variance(ANOVA) and Contingency Table Analysis(CTA). Regression analysis is used to evaluate the impact of these major factors on the intensity of outbursts based on physical experiments. Based on the evaluation, two simple models in terms of multiple linear and nonlinear regression were constructed for the prediction of the intensity of the outburst. The results show that the gas pressure and initial moisture in the coal mass could be the most significant factors compared to the weakest factor-porosity. The P values from Fisher's exact test in CTA are: moisture(0.019), geostress(0.290), porosity(0.650), and gas pressure(0.031). P values from ANOVA are moisture(0.094), geostress(0.077), porosity(0.420), and gas pressure(0.051). Furthermore, the multiple nonlinear regression model(RMSE: 3.870) is more accurate than the linear regression model(RMSE: 4.091).展开更多
The presence of seam gas in the form of methane or carbon dioxide presents a hazard to underground coal mining operations.In-seam drilling has been undertaken for the past three decades for gas drainage to reduce the ...The presence of seam gas in the form of methane or carbon dioxide presents a hazard to underground coal mining operations.In-seam drilling has been undertaken for the past three decades for gas drainage to reduce the risk of gas outburst and lower the concentrations of seam gas in the underground ventilation.The drilling practices have reflected the standards of the times and have evolved with the development of technology and equipment and the needs to provide a safe mining environment underground.Early practice was to adapt equipment from other felds,with rotary drilling being the only form of drilling available.This form of drainage allowed various levels of gas drainage coverage but with changing emphasis,research and development within the coal industry has created specifc equipment,technology and practices to accurately place in-seam boreholes to provide effcient and effective gas drainage.Research into gas content determination established a standard for the process and safe levels for mining operations to continue.Surveying technology improved from the wire-line,single-shot Eastman survey instruments which was time-dependent on borehole depth to electronic instruments located in the drill string which transmitted accurate survey data to the drilling crew without time delays.This allowed improved directional control and increased drilling rates.Directional drilling technology has now been established as the industry standard to provide effective gas drainage drilling.Exploration was identifed as an additional beneft with directional drilling as it has the ability to provide exploration data from long boreholes.The ability of the technology to provide safe and reliable means to investigate the need for inrush protection and water drainage ahead of mining has been established.Directional drilling technology has now been introduced to the Chinese coal industry for gas drainage through a practice of auditing,design,supply,training and ongoing support.Experienced drilling crews can offer site specifc gas drainage drilling services utilising the latest equipment and technology.展开更多
A simulation study was carried out to investigate the temporal evolution of H_(2)S in the Huangcaoxia underground gas storage (UGS), which is converted from a depleted sulfur-containing gas field. Based on the rock an...A simulation study was carried out to investigate the temporal evolution of H_(2)S in the Huangcaoxia underground gas storage (UGS), which is converted from a depleted sulfur-containing gas field. Based on the rock and fluid properties of the Huangcaoxia gas field, a multilayered model was built. The upper layer Jia-2 contains a high concentration of H_(2)S (27.2 g/m^(3)), and the lower layer Jia-1 contains a low concentration of H_(2)S (14.0 mg/m^(3)). There is also a low-permeability interlayer between Jia-1 and Jia-2. The multi-component fluid characterizations for Jia-1 and Jia-2 were implemented separately using the Peng-Robinson equation of state in order to perform the compositional simulation. The H_(2)S concentration gradually increased in a single cycle and peaked at the end of the production season. The peak H_(2)S concentration in each cycle showed a decreasing trend when the recovery factor (RF) of the gas field was lower than 70%. When the RF was above 70%, the peak H_(2)S concentration increased first and then decreased. A higher reservoir RF, a higher maximum working pressure, and a higher working gas ratio will lead to a higher H_(2)S removal efficiency. Similar to developing multi-layered petroleum fields, the operation of multilayered gas storage can also be divided into multi-layer commingled operation and independent operation for different layers. When the two layers are combined to build the storage, the sweet gas produced from Jia-1 can spontaneously mix with the sour gas produced from Jia-2 within the wellbore, which can significantly reduce the overall H_(2)S concentration in the wellstream. When the working gas volume is set constant, the allocation ratio between the two layers has little effect on the H_(2)S removal. After nine cycles, the produced gas’s H_(2)S concentration can be lowered to 20 mg/m^(3). Our study recommends combining the Jia-2 and Jia-1 layers to build the Huangcaoxia underground gas storage. This plan can quickly reduce the H_(2)S concentration of the produced gas to 20 mg/m^(3), thus meeting the gas export standards as well as the HSE (Health, Safety, and Environment) requirements in the field. This study helps the engineers understand the H_(2)S removal for sulfur-containing UGS as well as provides technical guidelines for converting other multilayered sour gas fields into underground storage sites.展开更多
Natural gas hydrate,oil and gas were all found together in the Qilian Mountain permafrost area,northeast of Qinghai-Tibet Plateau,China.They are closely associated with each other in space,but whether they are in any ...Natural gas hydrate,oil and gas were all found together in the Qilian Mountain permafrost area,northeast of Qinghai-Tibet Plateau,China.They are closely associated with each other in space,but whether they are in any genetic relations are unknown yet.In this paper,a hydrocarbon gas-generation series,gas-fluid migration series and hydrocarbon gas-accumulation series are analyzed to probe the spatial,temporal and genetic relationships among natural natural gas hydrate,oil and gas.The subsequent results show that natural gas hydrate,oil and gas actually form a natural gas hydrate-oil-gas system.Based on the Middle Jurassic and the Upper Triassic hydrocarbon gas-generation series,it is divided into four major sub-systems in the study area:(1)A conventional Upper Triassic gas-bearing sub-system with peak hydrocarbon gas-generation in the late Middle Jurassic;(2)a conventional Middle Jurassic oil-bearing sub-system with low to mature hydrocarbon gas-generation in the late Middle Jurassic;(3)a natural gas hydrate sub-system with main gas source from the Upper Triassic gas-bearing sub-system and minor gas source from the Middle Jurassic oil-bearing sub-system as well as little gas source from the Middle Jurassic coal-bed gas and the microbial gas;(4)a shallower gas sub-system with microbial alteration of the main gas source from the Upper Triassic gas-bearing sub-system.This natural gas hydrate-oil-gas system and its sub-systems are not only theoretical but also practical,and thus they will play an important role in the further exploration of natural gas hydrate,oil and gas,even other energy resources in the study area.展开更多
In order to study the propagation law of shock waves and gas flow during coal and gas outburst,we analyzed the formation process of outburst shock waves and gas flow and established the numerical simulation models of ...In order to study the propagation law of shock waves and gas flow during coal and gas outburst,we analyzed the formation process of outburst shock waves and gas flow and established the numerical simulation models of the roadways with 45°intersection and 135°intersection to simulate the propagation of outburst gas flow and the process of gas transport.Based on the analysis of the simulation results,we obtained the qualitative and quantitative conclusions on the characteristics and patterns of propagation and attenuation of outburst shock waves and gas flow.With the experimental models,we investigated the outburst shock waves and gas flow in the roadways with the similar structures to the simulated ones.According to the simulation results,when the angle between the driving roadway and the adjacent roadway increased,the sudden pressure variation range in adjacent roadway and the influencing scope of gas flow increased and the sudden pressure variation duration decreased.The intersection between the driving roadway and the adjacent roadway has no effect on airflow reversal induced by the shock waves and gas flow.展开更多
Based on the evolution of geological dynamics and spatial chaos theory, we proposed the advanced prediction an advanced prediction method of a gas desorption index of drill cuttings to predict coal and gas outbursts. ...Based on the evolution of geological dynamics and spatial chaos theory, we proposed the advanced prediction an advanced prediction method of a gas desorption index of drill cuttings to predict coal and gas outbursts. We investigated and verified the prediction method by a spatial series data of a gas desorption index of drill cuttings obtained from the 113112 coal roadway at the Shitai Mine. Our experimental results show that the spatial distribution of the gas desorption index of drill cuttings has some chaotic charac- teristics, which implies that the risk of coal and gas outbursts can be predicted by spatial chaos theory. We also found that a proper amount of sample data needs to be chosen in order to ensure the accuracy and practical maneuverability of prediction. The relative prediction error is small when the prediction pace is chosen carefully. In our experiments, it turned out that the optimum number of sample points is 80 and the optimum prediction pace 30. The corresponding advanced prediction pace basically meets the requirements of engineering applications.展开更多
In order to analyze the propagation characteristics of shock wave and gas flow induced by outburst intensity, the governing equations of shock wave and gas flow propagation were put forward, and the numerical simulati...In order to analyze the propagation characteristics of shock wave and gas flow induced by outburst intensity, the governing equations of shock wave and gas flow propagation were put forward, and the numerical simulation boundary condition was obtained based on outburst characteristics. The propagation characteristics of shock wave and gas flow were simulated by Fluent software, and the simulation results were verified by experiments. The results show that air shock wave is formed due to air medium compressed by the transient high pressure gas which rapidly expands in the roadway; the shock wave and gas flow with high velocity are formed behind the shock wave front, which significantly decays due to limiting effect of the roadway wall. The attenuation degree is greater in the early stage than that in the late stage, and the velocity of gas convection transport is lower than the speed of the shock wave.The greater the outburst intensity is, the greater the pressure of the shock wave front is, and the higher the speed of the shock wave and gas flow is.展开更多
The current study tested the gas component and carbon isotopic composition of gas samples from 6 oilgas fields at the northern margin of Qaidam Basin, and established a chart to quantitatively identify the mixing rati...The current study tested the gas component and carbon isotopic composition of gas samples from 6 oilgas fields at the northern margin of Qaidam Basin, and established a chart to quantitatively identify the mixing ratio of source-mixed gas. Besides, this research quantitatively investigated the natural gas generated by different types of organic matter. The results show that different ratios of source-mixed gas exist in the 6 oil-gas fields at the northern margin of Qaidam Basin. Among them, Mabei has the highest mixing ratio of coal-type gas, followed by Nanbaxian, Mahai, Lenghu-4, Lenghu-3 and Lenghu-5, with the ratios of coal-type gas 91%, 87%, 83%, 66%, 55% and 36%, respectively. Lenghu-3 and Lenghu-4 oil-gas fields were mainly filled by coal-type gas earlier. For Lenghu-3, the gas was mainly generated from low matured source rocks in lower Jurassic Series of Lengxi sub-sag. For Lenghu-4, the gas was mainly generated from humus-mature source rocks in lower Jurassic Series of the northern slope of Kunteyi sub-sag. Gas in Lenghu-5 was mainly later filled oil-type gas, which was generated from high matured sapropelics in lower Jurassic Series of Kunteyi sub-sag. Earlier filled coal-type gas was the main part of Mahai, Nanbaxian and Mabei oil-gas fields. Gas source of Mahai was mainly generated from high mature humics in lower Jurassic Series of Yibei sub-sag; for Nanbaxian, the gas was mainly generated from high matured humics in middle-lower Jurassic Series of Saishiteng sub-sag; for Mabei, the gas was mainly generated from humus-mature source rocks in middle Jurassic Series of Yuqia sub-sag.展开更多
According to the deficiency of experiment system for gas adsorption and desorption in coal mass, a large scale experiment system is developed independently by researchers. This experiment system is composed of primary...According to the deficiency of experiment system for gas adsorption and desorption in coal mass, a large scale experiment system is developed independently by researchers. This experiment system is composed of primary and auxiliary boxes, power transmission system, mining system, loading system, gas charging system, data monitoring and intelligent acquisition system. The maximum experiment coal consumption is 1200 kg, the mining system is developed to conduct experiment for gas desorption under excavating disturbance, and the plane-charging cribriform ventilation device is developed to realize uniform ventilation for experiment coal sample, which is accord with the actual gas source situation of coal bed. The desorption characteristics of gas in coal are experimentally studied under the conditions of nature and mining using the experiment system. The results show that, compare with nature condition, the permeability of coal and the velocity of gas desorption could significantly increase under the influence of coal pressure relief and destruction caused by mining, and the degree of gas desorption could somewhat increase too. Finally, pressure relief gas extraction of current seam and adjacent seams after mining in a certain coal mine of Yangquan mining area are introduced, and the gas desorption experiment results is verified by analyzing the effect of gas extraction.展开更多
The gas hydrates in the permafrost region of Qilian Mountain are characterized by low latitude, thin thickness, shallow burial depth, abundant coal seams, high contents of heavy hydrocarbons and multiple sets of sourc...The gas hydrates in the permafrost region of Qilian Mountain are characterized by low latitude, thin thickness, shallow burial depth, abundant coal seams, high contents of heavy hydrocarbons and multiple sets of source rocks. Up to date, the source of gas or the main source rocks of the Mull gas hydrates have remained unclear.展开更多
Objective As a new type of gas hydrates,the natural gas hydrates in the perfost region of the Qilian Mountains are characterized by their shallow burial depth,welldeveloped coal seam,high content of heavy hydrocarbons...Objective As a new type of gas hydrates,the natural gas hydrates in the perfost region of the Qilian Mountains are characterized by their shallow burial depth,welldeveloped coal seam,high content of heavy hydrocarbons and multiple sets of mature and over-mature source rocks.Gas sources of these gas hydrates in the study area include coal-type gas and oil-type gas.展开更多
The technology of pressure relief gas drainage is one of the most effective and economic for preventing gas emissions in underground mines.Based on current understanding of strata breakage and fracture development in ...The technology of pressure relief gas drainage is one of the most effective and economic for preventing gas emissions in underground mines.Based on current understanding of strata breakage and fracture development in overlying strata,the current study divides the overlying strata into the following three longitudinal zones in terms of the state of gas flow:a turbulent channel zone,a transitional circulation channel zone and a seepage channel zone.According to the key strata discrimination theory of controlling the overlying strata,the calculation method establishes that the step-type expansion of the mining gas channel corresponds to the advancing distance of working face,and this research also confrms the expanding rule that the mining gas channel in overlying strata follows the advancing distance of mining working face.Based on the geological conditions of Xinjing Coal Mine of Yangquan,this paper researches the expanding rule of mining gas channel as well as the control action of the channel acting on the pressure relief flow under the condition of the remote protective layer,and got the distance using inversion that the step-type expanding of mining gas channel is corresponding to the advancing distance of working face,which verifes the accuracy and feasibility of theoretical calculation method proposed in this study.The research provides the theoretical basis for choosing the technology of pressure relief gas drainage and designing the parameters of construction.展开更多
To study the law of gas dilatation energy release of rock cross-cut coal uncovering face, according to the analysis of the physical parameters distribution features of coal and rock mass in front of crosscut face,the ...To study the law of gas dilatation energy release of rock cross-cut coal uncovering face, according to the analysis of the physical parameters distribution features of coal and rock mass in front of crosscut face,the equations of elastic potential of coal and gas dilatation energy theory were set up to process a contrast calculation of the sizes of two kinds of energy. The results show that gas dilatation energy is the uppermost energy source causing outburst occurrence. Furthermore, the mathematical model of spherical flow field gas dilatation energy release was established and MATLAB software was applied to make a numerical calculation analysis on the law of gas dilatation energy release. The results indicate that the gas dilatation energy is closely related to gas parameters and its energy index does reflect the possibility of coal seam outburst.展开更多
To determine reasonable distance of gas pre-drainage drillings in coal seams, a solid–gas coupling model that takes gas adsorption effect into account was constructed. In view of different adsorption constants,the pa...To determine reasonable distance of gas pre-drainage drillings in coal seams, a solid–gas coupling model that takes gas adsorption effect into account was constructed. In view of different adsorption constants,the paper conducted the numerical simulation of pre-drainage gas in drillings along coal seam, studied the relationship of adsorption constants and permeability, gas pressure, and effective drainage radius of coal seams, and applied the approach to the layout of pre-drainage gas drillings in coal seams. The results show that the permeability of coal seams is on the gradual increase with time, which is divided into three sections according to the increase rate: the drainage time 0–30 d is the sharp increase section;30–220 d is the gradual increase section; and the time above 200 d is the stable section. The permeability of coal seams is in negative linear and positive exponent relation with volume adsorption constant VLand pressure adsorption constant PL, respectively. The effective drainage radius is in negative linear relation with VLand in positive exponent relation with PL. Compared with the former design scheme, the engineering quantity of drilling could be reduced by 25%.展开更多
Permeability sensitivity to stress experiments were conducted on standard core samples taken from Wen 23 Gas Storage at multi-cycle injection and production conditions of the gas storage to study the change pattern of...Permeability sensitivity to stress experiments were conducted on standard core samples taken from Wen 23 Gas Storage at multi-cycle injection and production conditions of the gas storage to study the change pattern of stress sensitivity of permeability.A method for calculating permeability under overburden pressure in the multi-cycle injection and production process was proposed,and the effect of stress sensitivity of reservoir permeability on gas well injectivity and productivity in UGS was analyzed.Retention rate of permeability decreased sharply first and then slowly with the increase of the UGS cycles.The stress sensitivity index of permeability decreased with the increase of cycle number of net stress variations in the increase process of net stress.The stress sensitivity index of permeability hardly changed with the increase of cycle number of net stress variations in the decrease process of net stress.With the increase of cycle number of net stress variation,the stress sensitivity index of permeability in the increase process of net stress approached that in the decrease process of net stress.The lower the reservoir permeability,the greater the irreversible permeability loss rate,the stronger the cyclic stress sensitivity,and the higher the stress sensitivity index of the reservoir,the stronger the reservoir stress sensitivity.The gas zones with permeability lower than 0.3’10-3 mm2 are not suitable as gas storage regions.Stress sensitivity of reservoir permeability has strong impact on gas well injectivity and productivity and mainly in the first few cycles.展开更多
For a low permeability single coal seam prone to gas outbursts, pre-drainage of gas is difficult and inefficient, seriously restricting the safety and efficiency of production. Radical measures of increasing gas extra...For a low permeability single coal seam prone to gas outbursts, pre-drainage of gas is difficult and inefficient, seriously restricting the safety and efficiency of production. Radical measures of increasing gas extraction efficiency are pressure relief and infrared antireflection. We have analyzed the effect of mining conditions and the regularity of mine pressure distribution in front of the working face of a major coal mine of the Jiaozuo Industrial (Group) Co. as our test area, studied the width of the depressurization zone in slice mining and analyzed gas efficiency and fast drainage in the advanced stress relaxation zone. On that basis, we further investigated and practiced the exploitation technology of shallow drilling, fan dril- ling and grid shape drilling at the working face. Practice and our results show that the stress relaxation zone is the ideal region for quick and efficient extraction of gas. By means of an integrated extraction technology, the amount of gas emitted into the zone was greatly reduced, while the risk of dangerous outbursts of coal and gas was lowered markedly. This exploration provides a new way to control for gas in working faces of coal mines with low permeability and risk of gas outbursts of single coal seams in the Jiaozuo mining area.展开更多
基金provided by the Science and Technology Grant of Huainan City of China (No.2013A4001)the Key Research Grant of Shanxi Province of China (No.201303027-1)
文摘The analytical mathematical solutions of gas concentration and fractional gas loss for the diffusion of gas in a cylindrical coal sample were given with detailed mathematical derivations by assuming that the diffusion of gas through the coal matrix is concentration gradient-driven and obeys the Fick’s Second Law of Diffusion.The analytical solutions were approximated in case of small values of time and the error analyses associated with the approximation were also undertaken.The results indicate that the square root relationship of gas release in the early stage of desorption,which is widely used to provide a simple and fast estimation of the lost gas,is the first term of the approximation,and care must be taken in using the square root relationship as a significant error might be introduced with increase in the lost time and decrease in effective diameter of a cylindrical coal sample.
基金This work was supported by the Department of Science and Technology of Sichuan Province(2019YFG0457)the National Natural Science Foundation of China(5183000045)+1 种基金the National Major Science and Technology Project of CNPC"Research and Application of Key Technologies for Beneft Development of Volcanic Rock Reservoirs”(2017E-04-05)the PetroChina Major Science and Technology Project(2018E-1805).
文摘Flue gas fooding is one of the important technologies to improve oil recovery and achieve greenhouse gas storage.In order to study multicomponent fue gas storage capacity and enhanced oil recovery(EOR)performance of fue gas water-alternating gas(fue gas-WAG)injection after continuous waterfooding in an oil reservoir,a long core fooding system was built.The experimental results showed that the oil recovery factor of fue gas-WAG fooding was increased by 21.25%after continuous waterfooding and fue gas-WAG fooding could further enhance oil recovery and reduce water cut signifcantly.A novel material balance model based on storage mechanism was developed to estimate the multicomponent fue gas storage capacity and storage capacity of each component of fue gas in reservoir oil,water and as free gas in the post-waterfooding reservoir.The ultimate storage ratio of fue gas is 16%in the fue gas-WAG fooding process.The calculation results of fue gas storage capacity showed that the injection gas storage capacity mainly consists of N_(2) and CO_(2),only N_(2) exists as free gas phase in cores,and other components of injection gas are dissolved in oil and water.Finally,injection strategies from three perspectives for fue gas storage,EOR,and combination of fue gas storage and EOR were proposed,respectively.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2007AA7023)the Innovation Foundation of BUAA for Ph.D Graduates (Grant No. 430569)
文摘The scaling of the flowfield in a gas gas combustion chamber is investigated theoretically, numerically and experimentally. To obtain the scaling criterion of the gas-gas combustion flowfield, formulation analysis of the threedimensional (3D) Navier-Stokes equations for a gaseous multi-component mixing reaction flow is conducted and dimensional analysis on the gas gas combustion phenomena is also carried out. The criterion implies that the size and the pressure of the gas gas combustion chamber can be changed. Based on the criterion, multi-element injector chambers with different geometric sizes and at different chamber pressures ranging from 3 MPa to 20 MPa are numerically simulated. A multi-element injector chamber is designed and hot-fire tested at five chamber pressures from 1.64 MPa to 3.68 MPa. Wall temperature measurements are used to understand the similarity of combustion flowfields in the tests. The results have verified the similarities between combustion flowfields under different chamber pressures and geometries, with the criterion applied.
基金provided by the Natural Science Foundation Project(Key)of Chongqing(No.cstc2013jjB0012)the National Natural Science Foundation of China(No.51434003)the National Natural Science Foundation of China(No.51474040)
文摘Estimating the intensity of outbursts of coal and gas is important as the intensity and frequency of outbursts of coal and gas tend to increase in deep mining. Fully understanding the major factors contributing to coal and gas outbursts is significant in the evaluation of the intensity of the outburst. In this paper, we discuss the correlation between these major factors and the intensity of the outburst using Analysis of Variance(ANOVA) and Contingency Table Analysis(CTA). Regression analysis is used to evaluate the impact of these major factors on the intensity of outbursts based on physical experiments. Based on the evaluation, two simple models in terms of multiple linear and nonlinear regression were constructed for the prediction of the intensity of the outburst. The results show that the gas pressure and initial moisture in the coal mass could be the most significant factors compared to the weakest factor-porosity. The P values from Fisher's exact test in CTA are: moisture(0.019), geostress(0.290), porosity(0.650), and gas pressure(0.031). P values from ANOVA are moisture(0.094), geostress(0.077), porosity(0.420), and gas pressure(0.051). Furthermore, the multiple nonlinear regression model(RMSE: 3.870) is more accurate than the linear regression model(RMSE: 4.091).
文摘The presence of seam gas in the form of methane or carbon dioxide presents a hazard to underground coal mining operations.In-seam drilling has been undertaken for the past three decades for gas drainage to reduce the risk of gas outburst and lower the concentrations of seam gas in the underground ventilation.The drilling practices have reflected the standards of the times and have evolved with the development of technology and equipment and the needs to provide a safe mining environment underground.Early practice was to adapt equipment from other felds,with rotary drilling being the only form of drilling available.This form of drainage allowed various levels of gas drainage coverage but with changing emphasis,research and development within the coal industry has created specifc equipment,technology and practices to accurately place in-seam boreholes to provide effcient and effective gas drainage.Research into gas content determination established a standard for the process and safe levels for mining operations to continue.Surveying technology improved from the wire-line,single-shot Eastman survey instruments which was time-dependent on borehole depth to electronic instruments located in the drill string which transmitted accurate survey data to the drilling crew without time delays.This allowed improved directional control and increased drilling rates.Directional drilling technology has now been established as the industry standard to provide effective gas drainage drilling.Exploration was identifed as an additional beneft with directional drilling as it has the ability to provide exploration data from long boreholes.The ability of the technology to provide safe and reliable means to investigate the need for inrush protection and water drainage ahead of mining has been established.Directional drilling technology has now been introduced to the Chinese coal industry for gas drainage through a practice of auditing,design,supply,training and ongoing support.Experienced drilling crews can offer site specifc gas drainage drilling services utilising the latest equipment and technology.
基金supported by the China Postdoctoral Science Foundation(2022M722637)as well as the Natural Science Foundation of Sichuan Province(2022NSFSC0190).
文摘A simulation study was carried out to investigate the temporal evolution of H_(2)S in the Huangcaoxia underground gas storage (UGS), which is converted from a depleted sulfur-containing gas field. Based on the rock and fluid properties of the Huangcaoxia gas field, a multilayered model was built. The upper layer Jia-2 contains a high concentration of H_(2)S (27.2 g/m^(3)), and the lower layer Jia-1 contains a low concentration of H_(2)S (14.0 mg/m^(3)). There is also a low-permeability interlayer between Jia-1 and Jia-2. The multi-component fluid characterizations for Jia-1 and Jia-2 were implemented separately using the Peng-Robinson equation of state in order to perform the compositional simulation. The H_(2)S concentration gradually increased in a single cycle and peaked at the end of the production season. The peak H_(2)S concentration in each cycle showed a decreasing trend when the recovery factor (RF) of the gas field was lower than 70%. When the RF was above 70%, the peak H_(2)S concentration increased first and then decreased. A higher reservoir RF, a higher maximum working pressure, and a higher working gas ratio will lead to a higher H_(2)S removal efficiency. Similar to developing multi-layered petroleum fields, the operation of multilayered gas storage can also be divided into multi-layer commingled operation and independent operation for different layers. When the two layers are combined to build the storage, the sweet gas produced from Jia-1 can spontaneously mix with the sour gas produced from Jia-2 within the wellbore, which can significantly reduce the overall H_(2)S concentration in the wellstream. When the working gas volume is set constant, the allocation ratio between the two layers has little effect on the H_(2)S removal. After nine cycles, the produced gas’s H_(2)S concentration can be lowered to 20 mg/m^(3). Our study recommends combining the Jia-2 and Jia-1 layers to build the Huangcaoxia underground gas storage. This plan can quickly reduce the H_(2)S concentration of the produced gas to 20 mg/m^(3), thus meeting the gas export standards as well as the HSE (Health, Safety, and Environment) requirements in the field. This study helps the engineers understand the H_(2)S removal for sulfur-containing UGS as well as provides technical guidelines for converting other multilayered sour gas fields into underground storage sites.
基金This work was supported by the projects of China Geological Survey(DD20160223,DD20190102).
文摘Natural gas hydrate,oil and gas were all found together in the Qilian Mountain permafrost area,northeast of Qinghai-Tibet Plateau,China.They are closely associated with each other in space,but whether they are in any genetic relations are unknown yet.In this paper,a hydrocarbon gas-generation series,gas-fluid migration series and hydrocarbon gas-accumulation series are analyzed to probe the spatial,temporal and genetic relationships among natural natural gas hydrate,oil and gas.The subsequent results show that natural gas hydrate,oil and gas actually form a natural gas hydrate-oil-gas system.Based on the Middle Jurassic and the Upper Triassic hydrocarbon gas-generation series,it is divided into four major sub-systems in the study area:(1)A conventional Upper Triassic gas-bearing sub-system with peak hydrocarbon gas-generation in the late Middle Jurassic;(2)a conventional Middle Jurassic oil-bearing sub-system with low to mature hydrocarbon gas-generation in the late Middle Jurassic;(3)a natural gas hydrate sub-system with main gas source from the Upper Triassic gas-bearing sub-system and minor gas source from the Middle Jurassic oil-bearing sub-system as well as little gas source from the Middle Jurassic coal-bed gas and the microbial gas;(4)a shallower gas sub-system with microbial alteration of the main gas source from the Upper Triassic gas-bearing sub-system.This natural gas hydrate-oil-gas system and its sub-systems are not only theoretical but also practical,and thus they will play an important role in the further exploration of natural gas hydrate,oil and gas,even other energy resources in the study area.
基金financially supported by the National Natural Science Foundation of China (No.51304213)the Open Funds of State Key Laboratory Cultivation Base for Gas Geology and Gas Control-Henan Polytechnic University of China (No.WS2013A03)the Fundamental Research Funds for Central Universities of China (No.2013QZ01)
文摘In order to study the propagation law of shock waves and gas flow during coal and gas outburst,we analyzed the formation process of outburst shock waves and gas flow and established the numerical simulation models of the roadways with 45°intersection and 135°intersection to simulate the propagation of outburst gas flow and the process of gas transport.Based on the analysis of the simulation results,we obtained the qualitative and quantitative conclusions on the characteristics and patterns of propagation and attenuation of outburst shock waves and gas flow.With the experimental models,we investigated the outburst shock waves and gas flow in the roadways with the similar structures to the simulated ones.According to the simulation results,when the angle between the driving roadway and the adjacent roadway increased,the sudden pressure variation range in adjacent roadway and the influencing scope of gas flow increased and the sudden pressure variation duration decreased.The intersection between the driving roadway and the adjacent roadway has no effect on airflow reversal induced by the shock waves and gas flow.
基金Financial support for this work, provided by the National Basic Research Program of China (No.2011CB201204)the National Youth Science Foundation Program (No.50904068)+1 种基金the Heilongjiang Science & Technology Scientific Research Foundation Program for the Eighth Introduction of Talent (No.06-26)the National Engineering Research Center for Coal Gas Control
文摘Based on the evolution of geological dynamics and spatial chaos theory, we proposed the advanced prediction an advanced prediction method of a gas desorption index of drill cuttings to predict coal and gas outbursts. We investigated and verified the prediction method by a spatial series data of a gas desorption index of drill cuttings obtained from the 113112 coal roadway at the Shitai Mine. Our experimental results show that the spatial distribution of the gas desorption index of drill cuttings has some chaotic charac- teristics, which implies that the risk of coal and gas outbursts can be predicted by spatial chaos theory. We also found that a proper amount of sample data needs to be chosen in order to ensure the accuracy and practical maneuverability of prediction. The relative prediction error is small when the prediction pace is chosen carefully. In our experiments, it turned out that the optimum number of sample points is 80 and the optimum prediction pace 30. The corresponding advanced prediction pace basically meets the requirements of engineering applications.
基金financially supported by the National Natural Science Foundation of China (Nos. 51174212, 51474219 and 51304213)the Special Research Foundation for Doctorate Disciplines in Universities of China (No. 20120023110006)State Key Laboratory for Coal Resources and Safe Mining, China University of Mining and Technology (No. SKLCRSM13KFB08)
文摘In order to analyze the propagation characteristics of shock wave and gas flow induced by outburst intensity, the governing equations of shock wave and gas flow propagation were put forward, and the numerical simulation boundary condition was obtained based on outburst characteristics. The propagation characteristics of shock wave and gas flow were simulated by Fluent software, and the simulation results were verified by experiments. The results show that air shock wave is formed due to air medium compressed by the transient high pressure gas which rapidly expands in the roadway; the shock wave and gas flow with high velocity are formed behind the shock wave front, which significantly decays due to limiting effect of the roadway wall. The attenuation degree is greater in the early stage than that in the late stage, and the velocity of gas convection transport is lower than the speed of the shock wave.The greater the outburst intensity is, the greater the pressure of the shock wave front is, and the higher the speed of the shock wave and gas flow is.
基金Financial support from the National Natural Science Foundation of China (No. 40730422)the Priority Academic Program Development of Jiangsu Higher Education Institutions of Chinadata provided by Jurassic Project Department in Research Institute of Petroleum Exploration and Development of China are gratefully acknowledged
文摘The current study tested the gas component and carbon isotopic composition of gas samples from 6 oilgas fields at the northern margin of Qaidam Basin, and established a chart to quantitatively identify the mixing ratio of source-mixed gas. Besides, this research quantitatively investigated the natural gas generated by different types of organic matter. The results show that different ratios of source-mixed gas exist in the 6 oil-gas fields at the northern margin of Qaidam Basin. Among them, Mabei has the highest mixing ratio of coal-type gas, followed by Nanbaxian, Mahai, Lenghu-4, Lenghu-3 and Lenghu-5, with the ratios of coal-type gas 91%, 87%, 83%, 66%, 55% and 36%, respectively. Lenghu-3 and Lenghu-4 oil-gas fields were mainly filled by coal-type gas earlier. For Lenghu-3, the gas was mainly generated from low matured source rocks in lower Jurassic Series of Lengxi sub-sag. For Lenghu-4, the gas was mainly generated from humus-mature source rocks in lower Jurassic Series of the northern slope of Kunteyi sub-sag. Gas in Lenghu-5 was mainly later filled oil-type gas, which was generated from high matured sapropelics in lower Jurassic Series of Kunteyi sub-sag. Earlier filled coal-type gas was the main part of Mahai, Nanbaxian and Mabei oil-gas fields. Gas source of Mahai was mainly generated from high mature humics in lower Jurassic Series of Yibei sub-sag; for Nanbaxian, the gas was mainly generated from high matured humics in middle-lower Jurassic Series of Saishiteng sub-sag; for Mabei, the gas was mainly generated from humus-mature source rocks in middle Jurassic Series of Yuqia sub-sag.
基金Acknowledgments This work is supported by the National Key Basic Research Program of China (2013CB227903) and the National Natural Science Foundation of China (U1361209).
文摘According to the deficiency of experiment system for gas adsorption and desorption in coal mass, a large scale experiment system is developed independently by researchers. This experiment system is composed of primary and auxiliary boxes, power transmission system, mining system, loading system, gas charging system, data monitoring and intelligent acquisition system. The maximum experiment coal consumption is 1200 kg, the mining system is developed to conduct experiment for gas desorption under excavating disturbance, and the plane-charging cribriform ventilation device is developed to realize uniform ventilation for experiment coal sample, which is accord with the actual gas source situation of coal bed. The desorption characteristics of gas in coal are experimentally studied under the conditions of nature and mining using the experiment system. The results show that, compare with nature condition, the permeability of coal and the velocity of gas desorption could significantly increase under the influence of coal pressure relief and destruction caused by mining, and the degree of gas desorption could somewhat increase too. Finally, pressure relief gas extraction of current seam and adjacent seams after mining in a certain coal mine of Yangquan mining area are introduced, and the gas desorption experiment results is verified by analyzing the effect of gas extraction.
基金financially supported by the National Natural Science Foundation of China(grant No.41273066)
文摘The gas hydrates in the permafrost region of Qilian Mountain are characterized by low latitude, thin thickness, shallow burial depth, abundant coal seams, high contents of heavy hydrocarbons and multiple sets of source rocks. Up to date, the source of gas or the main source rocks of the Mull gas hydrates have remained unclear.
基金financially supported by the National Science Foundation of china(Grant No.41273066)
文摘Objective As a new type of gas hydrates,the natural gas hydrates in the perfost region of the Qilian Mountains are characterized by their shallow burial depth,welldeveloped coal seam,high content of heavy hydrocarbons and multiple sets of mature and over-mature source rocks.Gas sources of these gas hydrates in the study area include coal-type gas and oil-type gas.
基金the National Basic Research Programs of China (No. 2011CB201204)the National Natural Science Foundation of China (Nos. 51074160)+1 种基金the Fundamental Research Funds for the Central Universities (No. 2010QNA03)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education institutions for their support for this project
文摘The technology of pressure relief gas drainage is one of the most effective and economic for preventing gas emissions in underground mines.Based on current understanding of strata breakage and fracture development in overlying strata,the current study divides the overlying strata into the following three longitudinal zones in terms of the state of gas flow:a turbulent channel zone,a transitional circulation channel zone and a seepage channel zone.According to the key strata discrimination theory of controlling the overlying strata,the calculation method establishes that the step-type expansion of the mining gas channel corresponds to the advancing distance of working face,and this research also confrms the expanding rule that the mining gas channel in overlying strata follows the advancing distance of mining working face.Based on the geological conditions of Xinjing Coal Mine of Yangquan,this paper researches the expanding rule of mining gas channel as well as the control action of the channel acting on the pressure relief flow under the condition of the remote protective layer,and got the distance using inversion that the step-type expanding of mining gas channel is corresponding to the advancing distance of working face,which verifes the accuracy and feasibility of theoretical calculation method proposed in this study.The research provides the theoretical basis for choosing the technology of pressure relief gas drainage and designing the parameters of construction.
文摘To study the law of gas dilatation energy release of rock cross-cut coal uncovering face, according to the analysis of the physical parameters distribution features of coal and rock mass in front of crosscut face,the equations of elastic potential of coal and gas dilatation energy theory were set up to process a contrast calculation of the sizes of two kinds of energy. The results show that gas dilatation energy is the uppermost energy source causing outburst occurrence. Furthermore, the mathematical model of spherical flow field gas dilatation energy release was established and MATLAB software was applied to make a numerical calculation analysis on the law of gas dilatation energy release. The results indicate that the gas dilatation energy is closely related to gas parameters and its energy index does reflect the possibility of coal seam outburst.
基金Financial support for this work,provided by the National Natural Science Foundation of China(Nos.51327007,51104118 and51204134)Shaanxi Province Youth Science and Technology Star Project of China(2014KJXX69)
文摘To determine reasonable distance of gas pre-drainage drillings in coal seams, a solid–gas coupling model that takes gas adsorption effect into account was constructed. In view of different adsorption constants,the paper conducted the numerical simulation of pre-drainage gas in drillings along coal seam, studied the relationship of adsorption constants and permeability, gas pressure, and effective drainage radius of coal seams, and applied the approach to the layout of pre-drainage gas drillings in coal seams. The results show that the permeability of coal seams is on the gradual increase with time, which is divided into three sections according to the increase rate: the drainage time 0–30 d is the sharp increase section;30–220 d is the gradual increase section; and the time above 200 d is the stable section. The permeability of coal seams is in negative linear and positive exponent relation with volume adsorption constant VLand pressure adsorption constant PL, respectively. The effective drainage radius is in negative linear relation with VLand in positive exponent relation with PL. Compared with the former design scheme, the engineering quantity of drilling could be reduced by 25%.
基金Supported by the Chongqing Technical Innovation and Application&Development Special Project(cstc2020jscx-msxmX0189)。
文摘Permeability sensitivity to stress experiments were conducted on standard core samples taken from Wen 23 Gas Storage at multi-cycle injection and production conditions of the gas storage to study the change pattern of stress sensitivity of permeability.A method for calculating permeability under overburden pressure in the multi-cycle injection and production process was proposed,and the effect of stress sensitivity of reservoir permeability on gas well injectivity and productivity in UGS was analyzed.Retention rate of permeability decreased sharply first and then slowly with the increase of the UGS cycles.The stress sensitivity index of permeability decreased with the increase of cycle number of net stress variations in the increase process of net stress.The stress sensitivity index of permeability hardly changed with the increase of cycle number of net stress variations in the decrease process of net stress.With the increase of cycle number of net stress variation,the stress sensitivity index of permeability in the increase process of net stress approached that in the decrease process of net stress.The lower the reservoir permeability,the greater the irreversible permeability loss rate,the stronger the cyclic stress sensitivity,and the higher the stress sensitivity index of the reservoir,the stronger the reservoir stress sensitivity.The gas zones with permeability lower than 0.3’10-3 mm2 are not suitable as gas storage regions.Stress sensitivity of reservoir permeability has strong impact on gas well injectivity and productivity and mainly in the first few cycles.
基金the Major State Basic Research Program of China which provided for our financial support (No. 2005CB221501)
文摘For a low permeability single coal seam prone to gas outbursts, pre-drainage of gas is difficult and inefficient, seriously restricting the safety and efficiency of production. Radical measures of increasing gas extraction efficiency are pressure relief and infrared antireflection. We have analyzed the effect of mining conditions and the regularity of mine pressure distribution in front of the working face of a major coal mine of the Jiaozuo Industrial (Group) Co. as our test area, studied the width of the depressurization zone in slice mining and analyzed gas efficiency and fast drainage in the advanced stress relaxation zone. On that basis, we further investigated and practiced the exploitation technology of shallow drilling, fan dril- ling and grid shape drilling at the working face. Practice and our results show that the stress relaxation zone is the ideal region for quick and efficient extraction of gas. By means of an integrated extraction technology, the amount of gas emitted into the zone was greatly reduced, while the risk of dangerous outbursts of coal and gas was lowered markedly. This exploration provides a new way to control for gas in working faces of coal mines with low permeability and risk of gas outbursts of single coal seams in the Jiaozuo mining area.