In this paper, the three_dimensional vo rtex filament method was used to simulate the evolution of vortex structures in the axisymmetric round jet. The results agree well with the ones given by Chung and Troutt. The...In this paper, the three_dimensional vo rtex filament method was used to simulate the evolution of vortex structures in the axisymmetric round jet. The results agree well with the ones given by Chung and Troutt. Then one_coupling model was employed to calculate the particle motio n based on the computed flows. The results show that the particle motion is affe cted by flows obviously at the case of particle number St1 and negligibly at St1 ,particles distribute around the vortex structures uniformly at St ~1 . When perturbations with wavenumber 5 are introduced to vortex rings, part icles disperse wider along radial direction, which conforms to the experimental results. The degree of particle dispersion is in the direct ratio to the amplitu de of perturbation. The conclusions given in the paper are useful to the practic e usage.展开更多
The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device.Characterisation of the flow field of a model gas turbine ...The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device.Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a2-D particle imaging velocimetry(PIV)system.The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions,i.e.,with and without the combustor wall.The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions.The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume.The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow.Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet,where the radial velocity components increase for both open and confined environment.Under reacting condition,the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity.The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants.The flow field data can be used as validation target for swirl combustion modelling.展开更多
A k ε PDF (probability density function) model based on a statistical theory for turbulent gas particle flows is proposed, and a numerical procedure combining the finite difference and finite fluctuating velocity...A k ε PDF (probability density function) model based on a statistical theory for turbulent gas particle flows is proposed, and a numerical procedure combining the finite difference and finite fluctuating velocity group methods is used. The obtained statistically averaged equations have the same form as that of the equations obtained by the Reynolds averaging. Using the k ε PDF model (PDF particle turbulence model combined with k ε gas turbulence model), many terms, such as the diffusion term in particle Reynolds stress equations, can be exactly calculated for verifying the second order moment model. The k ε PDF model is used to simulate gas particle flows behind a backward facing step. Comparison of the predictions using both k ε PDF and the k ε k p models with experimental results shows that the k ε PDF model gives more reasonable nonisotropic features of particle turbulence.展开更多
Swirl burner design was optimized by simulating swirl gas\|particle flows with different swirl numbers at the exit of a small\|scale swirl burner for pulverized\|coal furnaces using the k\|ε\|k p model. The pred...Swirl burner design was optimized by simulating swirl gas\|particle flows with different swirl numbers at the exit of a small\|scale swirl burner for pulverized\|coal furnaces using the k\|ε\|k p model. The predicted two\|phase time\|averaged velocities and particle concentration distributions for several different cases were compared to improve the design. The effect of the swirl number on the two\|phase velocities and particle concentration was investigated. The results give the two\|phase axial and tangential time\|averaged and fluctuation velocities and particle concentrations, showing that large recirculation zones of gas and particles forms in the near\|axis region of the burner exit, but the particle concentration in the recirculating zone is very low.展开更多
A new type of swirl burner has been developed to stabilize pulverized\|coal combustion by burning different types of coal at different loads and to reduce NO x formation during combustion. The burner uses a device to...A new type of swirl burner has been developed to stabilize pulverized\|coal combustion by burning different types of coal at different loads and to reduce NO x formation during combustion. The burner uses a device to concentrate the coal powder in the primary\|air tube that divides the primary coal\|air into two streams with different pulverized\|coal concentrations. This paper reports the measurement of gas\|particle flows at the exit of the different swirl burners using a 3\|D Phase Doppler Particle Anemometer (PDPA). The effect of different geometrical configurations on the two\|phase flow field is studied. The results that give the two\|phase flow fields and particle concentrations show the superiority of the new swirl burner.展开更多
The momentum and heat coupling between carrier fluid and particles are a complex and challenge topic in turbulent reactive gas-solid flow modeling.Most observations on this topic,either numerical or experimental,are b...The momentum and heat coupling between carrier fluid and particles are a complex and challenge topic in turbulent reactive gas-solid flow modeling.Most observations on this topic,either numerical or experimental,are based on Eulerian framework,which is not enough for developing the probability density function(PDF) model.In this paper,the instantous behavior and multi-particle statistics of passive scalar along inertial particle trajectory,in homogenous isotropic turbulence with a mean scalar gradient,are investigated by using the direct numerical simulation(DNS).The results show that St^1.0 particles are easy to aggregate in high strain and low vorticity regions in the fluid field,where the scalar dissipation is usually much higher than the mean value,and that every time they move across the cliff structures,the scalar change is much more intensive.Anyway,the self-correlation of scalar along particle trajectory is significantly different from the velocities observed by particle,for which the prefer-concentration effect is evident.The mechanical-to-thermal time scale ratio averaged along the particles,<r> p,is approximately two times smaller than that computed in the Eulerian frame r,and stays at nearly 1.77 with a weak dependence on particle inertia.展开更多
In practical operations,the carbon monoxide(CO)distribution in an opposite-wall-firing furnace(OWFF)is characterized by a high concentration near the side walls and a low concentration in the center,accompanied by a s...In practical operations,the carbon monoxide(CO)distribution in an opposite-wall-firing furnace(OWFF)is characterized by a high concentration near the side walls and a low concentration in the center,accompanied by a series of combustionrelated issues.To find the reasons for the CO distribution,a numerical study was conducted on a 660 MWe OWFF.The CO concentration profiles,distribution coefficients of coal and air,mixing coefficients,and the aerodynamic characteristics were extracted for analysis.The CO distribution within the furnace greatly depends on the mixing of coal and air.A mismatch between the aerodynamic behaviors of coal and air causes the non-uniform distribution of CO.Taking into consideration that distinctive flow patterns exist within the different regions,the formation mechanisms of the CO distribution can be divided into two components:(1)In the burner region,the collision of opposite flows leads to the migration of gas and particles toward the side wall which,together with the vortexes formed at furnace corners,is responsible for unburned particles concentrated and oxygenized from the furnace center to the side wall.Thus,high CO concentrations appear in these areas.(2)As the over-fire air(OFA)jet is injected into the furnace,it occupies the central region of furnace and pushes the gas from the burner region outward to the side wall,which is disadvantageous for the mixing effect in the side wall region.As a consequence,a U-shaped distribution of CO concentration is formed.Our results contribute to a theoretical basis for facilitating the control of variation in CO concentration within the furnace.展开更多
文摘In this paper, the three_dimensional vo rtex filament method was used to simulate the evolution of vortex structures in the axisymmetric round jet. The results agree well with the ones given by Chung and Troutt. Then one_coupling model was employed to calculate the particle motio n based on the computed flows. The results show that the particle motion is affe cted by flows obviously at the case of particle number St1 and negligibly at St1 ,particles distribute around the vortex structures uniformly at St ~1 . When perturbations with wavenumber 5 are introduced to vortex rings, part icles disperse wider along radial direction, which conforms to the experimental results. The degree of particle dispersion is in the direct ratio to the amplitu de of perturbation. The conclusions given in the paper are useful to the practic e usage.
基金Supported by the Ministry of Higher Education Malaysia and Universiti Teknologi Malaysia(Research University Grant Tier-1,Grant No.06H29)Ministry of Science,Technology and Innovation(MOSTI)Malaysia(Grant No.03-01-06-KHAS01)
文摘The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device.Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a2-D particle imaging velocimetry(PIV)system.The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions,i.e.,with and without the combustor wall.The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions.The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume.The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow.Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet,where the radial velocity components increase for both open and confined environment.Under reacting condition,the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity.The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants.The flow field data can be used as validation target for swirl combustion modelling.
文摘A k ε PDF (probability density function) model based on a statistical theory for turbulent gas particle flows is proposed, and a numerical procedure combining the finite difference and finite fluctuating velocity group methods is used. The obtained statistically averaged equations have the same form as that of the equations obtained by the Reynolds averaging. Using the k ε PDF model (PDF particle turbulence model combined with k ε gas turbulence model), many terms, such as the diffusion term in particle Reynolds stress equations, can be exactly calculated for verifying the second order moment model. The k ε PDF model is used to simulate gas particle flows behind a backward facing step. Comparison of the predictions using both k ε PDF and the k ε k p models with experimental results shows that the k ε PDF model gives more reasonable nonisotropic features of particle turbulence.
文摘Swirl burner design was optimized by simulating swirl gas\|particle flows with different swirl numbers at the exit of a small\|scale swirl burner for pulverized\|coal furnaces using the k\|ε\|k p model. The predicted two\|phase time\|averaged velocities and particle concentration distributions for several different cases were compared to improve the design. The effect of the swirl number on the two\|phase velocities and particle concentration was investigated. The results give the two\|phase axial and tangential time\|averaged and fluctuation velocities and particle concentrations, showing that large recirculation zones of gas and particles forms in the near\|axis region of the burner exit, but the particle concentration in the recirculating zone is very low.
文摘A new type of swirl burner has been developed to stabilize pulverized\|coal combustion by burning different types of coal at different loads and to reduce NO x formation during combustion. The burner uses a device to concentrate the coal powder in the primary\|air tube that divides the primary coal\|air into two streams with different pulverized\|coal concentrations. This paper reports the measurement of gas\|particle flows at the exit of the different swirl burners using a 3\|D Phase Doppler Particle Anemometer (PDPA). The effect of different geometrical configurations on the two\|phase flow field is studied. The results that give the two\|phase flow fields and particle concentrations show the superiority of the new swirl burner.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50936001,51021065,50976042)the State Key Fundamental Research Program,Ministry of Science and Technology,China (Grant Nos. 2010CB227004,2011CB707301)
文摘The momentum and heat coupling between carrier fluid and particles are a complex and challenge topic in turbulent reactive gas-solid flow modeling.Most observations on this topic,either numerical or experimental,are based on Eulerian framework,which is not enough for developing the probability density function(PDF) model.In this paper,the instantous behavior and multi-particle statistics of passive scalar along inertial particle trajectory,in homogenous isotropic turbulence with a mean scalar gradient,are investigated by using the direct numerical simulation(DNS).The results show that St^1.0 particles are easy to aggregate in high strain and low vorticity regions in the fluid field,where the scalar dissipation is usually much higher than the mean value,and that every time they move across the cliff structures,the scalar change is much more intensive.Anyway,the self-correlation of scalar along particle trajectory is significantly different from the velocities observed by particle,for which the prefer-concentration effect is evident.The mechanical-to-thermal time scale ratio averaged along the particles,<r> p,is approximately two times smaller than that computed in the Eulerian frame r,and stays at nearly 1.77 with a weak dependence on particle inertia.
文摘In practical operations,the carbon monoxide(CO)distribution in an opposite-wall-firing furnace(OWFF)is characterized by a high concentration near the side walls and a low concentration in the center,accompanied by a series of combustionrelated issues.To find the reasons for the CO distribution,a numerical study was conducted on a 660 MWe OWFF.The CO concentration profiles,distribution coefficients of coal and air,mixing coefficients,and the aerodynamic characteristics were extracted for analysis.The CO distribution within the furnace greatly depends on the mixing of coal and air.A mismatch between the aerodynamic behaviors of coal and air causes the non-uniform distribution of CO.Taking into consideration that distinctive flow patterns exist within the different regions,the formation mechanisms of the CO distribution can be divided into two components:(1)In the burner region,the collision of opposite flows leads to the migration of gas and particles toward the side wall which,together with the vortexes formed at furnace corners,is responsible for unburned particles concentrated and oxygenized from the furnace center to the side wall.Thus,high CO concentrations appear in these areas.(2)As the over-fire air(OFA)jet is injected into the furnace,it occupies the central region of furnace and pushes the gas from the burner region outward to the side wall,which is disadvantageous for the mixing effect in the side wall region.As a consequence,a U-shaped distribution of CO concentration is formed.Our results contribute to a theoretical basis for facilitating the control of variation in CO concentration within the furnace.