In order to investigate the influence on shale gas well productivity caused by gas transport in nanometer- size pores, a mathematical model of multi-stage fractured horizontal wells in shale gas reservoirs is built, w...In order to investigate the influence on shale gas well productivity caused by gas transport in nanometer- size pores, a mathematical model of multi-stage fractured horizontal wells in shale gas reservoirs is built, which considers the influence of viscous flow, Knudsen diffusion, surface diffusion, and adsorption layer thickness. A dis- crete-fracture model is used to simplify the fracture mod- cling, and a finite element method is applied to solve the model. The numerical simulation results indicate that with a decrease in the intrinsic matrix permeability, Knudsen diffusion and surface diffusion contributions to production become large and cannot be ignored. The existence of an adsorption layer on the nanopore surfaces reduces the effective pore radius and the effective porosity, resulting in low production from fractured horizontal wells. With a decrease in the pore radius, considering the adsorption layer, the production reduction rate increases. When the pore radius is less than 10 nm, because of the combined impacts of Knudsen diffusion, surface diffusion, and adsorption layers, the production of multi-stage fractured horizontal wells increases with a decrease in the pore pressure. When the pore pressure is lower than 30 MPa, the rate of production increase becomes larger with a decrease in pore pressure.展开更多
Excessive accumulation of chloride(Cl^(-))in the aboveground tissues under saline conditions is harmful to crops.Increasing the exclusion of Cl^(-) from shoots promotes salt tolerance in various crops.However,the unde...Excessive accumulation of chloride(Cl^(-))in the aboveground tissues under saline conditions is harmful to crops.Increasing the exclusion of Cl^(-) from shoots promotes salt tolerance in various crops.However,the underlying molecular mechanisms remain largely unknown.In this study,we demonstrated that a type A response regulator(ZmRR1)modulates Cl^(-) exclusion from shoots and underlies natural variation of salt tolerance in maize.ZmRR1 negatively regulates cytokinin signaling and salt tolerance,likely by interacting with and inhibiting His phosphotransfer(HP)proteins that are key mediators of cytokinin signaling.A naturally occurring non-synonymous SNP variant enhances the interaction between ZmRR1 and ZmHP2,conferring maize plants with a salt-hypersensitive phenotype.We found that ZmRR1 undergoes degradation under saline conditions,leading to the release of ZmHP2 from ZmRR1 inhibition,and subsequently ZmHP2-mediated signaling improves salt tolerance primarily by promoting Cl^(-) exclusion from shoots.Furthermore,we showed that ZmMATE29 is transcriptionally upregulated by ZmHP2-mediated signaling under highly saline conditions and encodes a tonoplast-located Cl^(-) transporter that promotes Cl^(-) exclusion from shoots by compartmentalizing Cl^(-) into the vacuoles of root cortex cells.Collectively,our study provides an important mechanistic understanding of the cytokinin signaling-mediated promotion of Cl^(-) exclusion from shoots and salt tolerance and suggests that genetic modification to promote Cl^(-) exclusion from shoots is a promising route for developing salt-tolerant maize.展开更多
基金supported by the National Natural Science Foundation of China (No. 51234007, No. 51490654, No. 51504276, and No. 51504277)Program for Changjiang Scholars and Innovative Research Team in University (IRT1294)+3 种基金the Natural Science Foundation of Shandong Province (ZR2014EL016, ZR2014EEP018)China Postdoctoral Science Foundation (No. 2014M551989 and No. 2015T80762)the Major Programs of Ministry of Education of China (No. 311009)Introducing Talents of Discipline to Universities (B08028)
文摘In order to investigate the influence on shale gas well productivity caused by gas transport in nanometer- size pores, a mathematical model of multi-stage fractured horizontal wells in shale gas reservoirs is built, which considers the influence of viscous flow, Knudsen diffusion, surface diffusion, and adsorption layer thickness. A dis- crete-fracture model is used to simplify the fracture mod- cling, and a finite element method is applied to solve the model. The numerical simulation results indicate that with a decrease in the intrinsic matrix permeability, Knudsen diffusion and surface diffusion contributions to production become large and cannot be ignored. The existence of an adsorption layer on the nanopore surfaces reduces the effective pore radius and the effective porosity, resulting in low production from fractured horizontal wells. With a decrease in the pore radius, considering the adsorption layer, the production reduction rate increases. When the pore radius is less than 10 nm, because of the combined impacts of Knudsen diffusion, surface diffusion, and adsorption layers, the production of multi-stage fractured horizontal wells increases with a decrease in the pore pressure. When the pore pressure is lower than 30 MPa, the rate of production increase becomes larger with a decrease in pore pressure.
基金the financial support from National Key Research and Development Program of China(2022YFA1300061 to C.J.,2022YFD1900704 and 2021YFF1000500 to J.Z.)Beijing Outstanding Young Scientist Program(BJJWZYJH01201910019026 to F.Q.)+2 种基金National Natural Science Foundation of China(32070306 to J.Z.)the Chinese Universities Scientific Fund(15051011 to C.J.,2022RC046 to J.Z.)the 2115 Talent Development Program of China Agricultural University.
文摘Excessive accumulation of chloride(Cl^(-))in the aboveground tissues under saline conditions is harmful to crops.Increasing the exclusion of Cl^(-) from shoots promotes salt tolerance in various crops.However,the underlying molecular mechanisms remain largely unknown.In this study,we demonstrated that a type A response regulator(ZmRR1)modulates Cl^(-) exclusion from shoots and underlies natural variation of salt tolerance in maize.ZmRR1 negatively regulates cytokinin signaling and salt tolerance,likely by interacting with and inhibiting His phosphotransfer(HP)proteins that are key mediators of cytokinin signaling.A naturally occurring non-synonymous SNP variant enhances the interaction between ZmRR1 and ZmHP2,conferring maize plants with a salt-hypersensitive phenotype.We found that ZmRR1 undergoes degradation under saline conditions,leading to the release of ZmHP2 from ZmRR1 inhibition,and subsequently ZmHP2-mediated signaling improves salt tolerance primarily by promoting Cl^(-) exclusion from shoots.Furthermore,we showed that ZmMATE29 is transcriptionally upregulated by ZmHP2-mediated signaling under highly saline conditions and encodes a tonoplast-located Cl^(-) transporter that promotes Cl^(-) exclusion from shoots by compartmentalizing Cl^(-) into the vacuoles of root cortex cells.Collectively,our study provides an important mechanistic understanding of the cytokinin signaling-mediated promotion of Cl^(-) exclusion from shoots and salt tolerance and suggests that genetic modification to promote Cl^(-) exclusion from shoots is a promising route for developing salt-tolerant maize.