期刊文献+
共找到198篇文章
< 1 2 10 >
每页显示 20 50 100
Gas cyclone-liquid jet absorption separator used for treatment of tail gas containing HCl in titanium dioxide industry
1
作者 Liwang Wang Hualin Wang +2 位作者 Liang Ma Zhanghuang Yang Erwen Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期435-446,共12页
In the titanium dioxide industry,there is a lack of a low-cost and high-efficiency treatment method for chloride containing tail gas.In this paper,the removal of HCl from the titanium dioxide industry by gas cyclone-l... In the titanium dioxide industry,there is a lack of a low-cost and high-efficiency treatment method for chloride containing tail gas.In this paper,the removal of HCl from the titanium dioxide industry by gas cyclone-liquid jet separator was studied,while Ca(OH)_(2),Na_(2)CO_(3),NaOH solution,and water were used as absorbents.This paper investigated the influence of gas cyclone-liquid jet separator’s various process parameters on the removal rate of hydrogen chloride gas.The mechanism of mass transfer in the process of removing hydrogen chloride was discussed,and the effect and feasibility of HCl gas removal in the gas cyclone-liquid jet absorption separator were studied.The results showd that the removal efficiency of hydrogen chloride maintained above 95%,up to 99.9%,and the total mass transfer coefficient reached0.28 mol·m^(-3)·s^(-1)·k Pa^(-1).Under the same conditions,the absorption effect and total mass transfer coefficient of weak basic absorption liquid can be greatly improved by increasing the flow rate of absorption liquid,but the absorption effect and total mass transfer coefficient of strong alkaline absorption liquid can’t be improved obviously.The larger the inlet gas volume,the higher the gas concentration,the lower the absorption efficiency and the lower the total volumetric mass transfer coefficient. 展开更多
关键词 Wet dechlorination HCL Tail gas gas cyclone-liquid jet absorption separator Titanium dioxide industry
下载PDF
Feasibility Analysis of Typical Cryogenic Processes for Hydrogen-Mixed Natural Gas Separation 被引量:1
2
作者 Tingxia Ma Longyao Zhang +3 位作者 Lin Wang Jinqiang Wu Wenying Hui Cheng Yu 《Energy Engineering》 EI 2023年第4期911-930,共20页
Hydrogen energy is a crucial carrier for the growth of the energy system and its low-carbon transformation.Using natural gas as a carrier of hydrogen transport and the natural gas pipeline network for transportation i... Hydrogen energy is a crucial carrier for the growth of the energy system and its low-carbon transformation.Using natural gas as a carrier of hydrogen transport and the natural gas pipeline network for transportation is a significant step toward realizing large-scale and long-distance hydrogen transport.Hydrogen-mixed natural gas is mainly separated into hydrogen and natural gas by physical methods at present.High purity of hydrogen recovery,but the recovery rate is low.At the same time,compared with natural gas,liquefied natural gas is more economical and flexible.This study analyzes three typical cryogenic separation processes.The results show that the hydrogen separation efficiency and specific energy consumption increase and the liquefaction rate and energy consumption decrease as the hydrogen ratio increases.The energy consumption and specific energy consumption of C3-MRC are lower than the MRC and the cascade liquefaction processes.Besides,as the pressure increases in the C3-MRC liquefaction process,the liquefaction and hydrogen separation efficiency increase and subsequently drop.Different hydrogen content has the highest hydrogen separation efficiency and liquefaction efficiency under different feed gas pressure conditions.The total exergy losses of the C3-MRC are the least in different hydrogen fractions,which are 37.59%and 21.77%less in the 25%hydrogen fraction,and 37.89%and 21.37%less in the 30%hydrogen fraction.Moreover,the exergy efficiency of C3-MRC are 87.68%and 88.06%when the hydrogen fraction are 25%and 30%,higher than the other two processes,which implies that in 25%and 30%fractions,making it more suitable for separate the hydrogen by the cryogenic separation. 展开更多
关键词 Hydrogen-mixed natural gas natural gas cryogenic separation HYDROGEN
下载PDF
Numerical Simulation and Experimental Study on the Performance of Gas/liquid Spiral Separator 被引量:6
3
作者 周帼彦 涂善东 凌祥 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第5期596-603,共8页
The gas/liquid spiral separator, a key component in the compressed air system, was used to remove liquid and oil from gas stream by centrifugal and gravitational forces. To optimize the design of the separator,the rel... The gas/liquid spiral separator, a key component in the compressed air system, was used to remove liquid and oil from gas stream by centrifugal and gravitational forces. To optimize the design of the separator,the relationship between the performance and structural parameters of separators is studied. Computational fluid dynamics (CFD) method is employed to simulate the flow fields and calculate the pressure drop and separation efficiency of air-liquid spiral separators with different structural parameters. The RSM (Reynolds stress model)turbulence model is used to analyze the highly swirling flow fields while the stochastic trajectory model is used to simulate the traces of liquid droplets in the flow field. A simplified calculation formula of pressure drop in spiral structures is obtained by modifying Darcy's equation and verified by experiment. 展开更多
关键词 gas/liquid separator spiral structure computational fluid dynamics pressure drop separation efficiency numerical simulation
下载PDF
Performance assessment of an inline horizontal swirl tube cyclone for gas-liquid separation at high pressure 被引量:4
4
作者 Nurhayati Mellon Azmi M. Shariff 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第6期565-567,共3页
The application of swirl tube cyclone for gas-liquid separation is attractive due to its small size and weight. However, very scarce information on the performance of the swirl tube cyclone especially at high operatin... The application of swirl tube cyclone for gas-liquid separation is attractive due to its small size and weight. However, very scarce information on the performance of the swirl tube cyclone especially at high operating pressure emulating actual field condition was published in journals. Performance assessment was usually done at a low operating pressure using either air-water, air-fine particle mixtures or dense gas such as SF6 . This paper fills the existing gaps and reports the initial findings on the performance assessment of a horizontal swirl tube cyclone for gas-liquid separation operating at a flow rate of 5 MMSCFD at 40-60 bar operating pressure. 展开更多
关键词 compact separator CYCLONE swirl tube natural gas separation
下载PDF
Title Supersonic Condensation and Separation Characteristics of CO_(2)-Rich Natural Gas under Different Pressures
5
作者 Yong Zheng Lei Zhao +6 位作者 YujiangWang Feng Chang Weijia Dong Xinying Liu Yunfei Li Xiaohan Zhang Ziyuan Zhao 《Energy Engineering》 EI 2023年第2期529-540,共12页
Supersonic separation technology is a new natural gas sweetening method for the treatment of natural gas with high CO_(2)(carbon dioxide)content.The structures of the Laval nozzle and the supersonic separator were des... Supersonic separation technology is a new natural gas sweetening method for the treatment of natural gas with high CO_(2)(carbon dioxide)content.The structures of the Laval nozzle and the supersonic separator were designed,and the mathematical models of supersonic condensation and swirling separation for CO_(2)-CH4 mixture gas were established.The supersonic condensation characteristics of CO_(2) in natural gas and the separation characteristics of condensed droplets under different inlet pressures were studied.The results show that higher inlet pressure results in a larger droplet radius and higher liquid phase mass fraction;additionally,the influence of centrifugal force is more pronounced,and the separation efficiency and removal efficiency of CO_(2) are higher.When the inlet pressure is 6 and 9 MPa,the liquefaction efficiency at the Laval nozzle outlet increases from 56.90%to 79.97%,and the outlet droplet radius increases from 0.39 to 0.72μm,and the removal efficiency is 31.25%and 54.52%,respectively.The effects of inlet pressures on the removal efficiency of the supersonic separator are complicated and are controlled by the combined effects of liquefaction capacity of the nozzle and centrifugal separation capacity of the swirl vane. 展开更多
关键词 Supersonic separator Laval nozzle natural gas carbon dioxide CONDENSATION separation
下载PDF
Evaluation of gas-liquid separation performance of natural gas filters 被引量:2
6
作者 Baisong Li Zhongli Ji Xue Yang 《Petroleum Science》 SCIE CAS CSCD 2009年第4期438-444,共7页
Fibrous filters are often used to remove contaminants including both dusts and liquid droplets from natural gas. This paper aims to evaluate the gas-liquid separation performance of three types of cartridge filters us... Fibrous filters are often used to remove contaminants including both dusts and liquid droplets from natural gas. This paper aims to evaluate the gas-liquid separation performance of three types of cartridge filters used in the West-East natural gas transmission project. The comparison of the original pressure drop of clean filters and the evolution of pressure drop as liquid droplets deposited in the filter media are described. The original pressure drops of these filters were similar but the pressure drops at a steady state were different. Fractional efficiency was used to study the separation performance of cartridge filters. Droplets at the outlet of the filters had small diameters, no more than 3 μm, but were very numerous. The effect of filtration velocity on gas-liquid separation performance was analyzed. Higher filtration velocity indicated better gas-liquid separation performance. Finally the quality factor related to pressure drop and filtration efficiency was applied to evaluate the gas-liquid separation performance. 展开更多
关键词 FILTRATION natural gas gas-liquid separation fractional efficiency pressure drop
下载PDF
CFD studies on the separation performance of a new combined gas–solid separator used in TMSR-SF 被引量:1
7
作者 Mengdan Wu Ning Zhang +2 位作者 Jinguo Zhai Guo-Yan Zhou Shan-Tung Tu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第9期61-72,共12页
In order to comply with discharge standards, a gas–solid separator is used to remove solid particles from the thorium molten salt reactor-solid fuel (TMSR-SF) system. As a key component, it directly determines system... In order to comply with discharge standards, a gas–solid separator is used to remove solid particles from the thorium molten salt reactor-solid fuel (TMSR-SF) system. As a key component, it directly determines system energy efficiency. However, current gas–solid separators, based on activated carbon adsorption technology, result in high pressure drops and increased maintenance costs. In the present study, a new combined gas–solid separator was developed for the TMSR-SF. Based on a simplified computational fluid dynamics (CFD) model, the gas–solid twophase flow and the motion trajectory of solid particles were simulated for this new separator using commercial ANSYS 16.0 software. The flow and separation mechanism for this structure were also been discussed in terms of their velocity effects and pressure field distributions, and then the structure was optimized based on the influence of key structural parameters on pressure and separation efficiency. The results showed that the standard k–ε model could be achieved and accurately simulated the new combined separator. In this new combined gas–solid separator, coarse particles are separated in the first stage using rotating centrifugal motion, and then fine particles are filtered in the second stage, giving a separation efficiency of up to 96.11%. The optimum blade inclination angle and numbers were calculated to be 45° and four, respectively. It implicated that the combined separator could be of great significance in a wide variety of applications. 展开更多
关键词 COMBINED separator gas–solid TWO-PHASE flow Structure optimization CFD TMSR-SF
下载PDF
Development an Easy-to-Use Simulator to Thermodynamic Design of Gas Condensate Reservoir’s Separators
8
作者 Ahmadreza Ejraei Bakyani Samira Heidari +1 位作者 Alireza Rasti Azadeh Namdarpoor 《Modeling and Numerical Simulation of Material Science》 2018年第1期1-19,共19页
Separator design in petroleum engineering is so important because of its important role in the evaluation of optimum parameters and also to achieve to maximum stock tank liquid. However, no simulator exists that simul... Separator design in petroleum engineering is so important because of its important role in the evaluation of optimum parameters and also to achieve to maximum stock tank liquid. However, no simulator exists that simultaneously and directly optimizes the parameters “pressure”, “temperature”, and so on. On the other hands, Commercial simulators fix one parameter and vary another parameter to achieve the optimum conditions. So, they need long-time simulation. Moreover, gas condensate reservoirs, like another reservoirs, have this problem as well. In present paper, a self-developed simulator applied in the optimized design of gas condensate reservoir’s separators by determining optimized pressure, temperature, and number of separators in order to obtain maximized tank liquid volume and minimized tank liquid density utilizing Matlab software and other commercial simulators such as Aspen-Plus, Aspen-Hysys, and PVTi to do a comparison. Also, each software was separately tested with one, two, and three separators to obtain the optimum number of separators. Additionally, Peng-Robinson equation of state (PR EOS) has been applied in the simulation. For simulation input, a set of field data of gas condensate reservoir has been utilized, as well. The results show a good compatibility of this simulator with other simulators but in so little runtime (this simulator calculates the optimum pressure and temperature in a wide range of pressures and temperatures with the help of a simultaneous optimization algorithm in one stage) and the highest stock tank liquid is calculated with this simulator in comparison to other simulators. Also, with the help of this simulator, we are able to obtain the optimum pressure, temperature, and the number of separators in the gas condensate reservoir’s separators with any desired properties. Finally, this simulator optimizes the temperatures for each separator and obtains very good results despite the other simulators that fix temperatures for all separators in most times. 展开更多
关键词 separator Design Matlab Software Simultaneous Algorithm OPTIMUM Condition gas CONDENSATE RESERVOIR
下载PDF
Separation Properties of a New Polysiloxane-Anchored β-Cyclodextrin Derivative as Gas Chromatography Stationary Phase 被引量:1
9
作者 史雪岩 傅若农 顾峻岭 《Journal of Beijing Institute of Technology》 EI CAS 2002年第3期285-289,共5页
A new capillary gas chromatography stationary phase, monokis (2,6 di O benzyl 3 O propyl (3’)) hexakis(2,6 di O benzyl 3 O methyl) β CD bonded polysiloxane, was synthesized. It ex... A new capillary gas chromatography stationary phase, monokis (2,6 di O benzyl 3 O propyl (3’)) hexakis(2,6 di O benzyl 3 O methyl) β CD bonded polysiloxane, was synthesized. It exhibited separation abilities to disubstituted benzene isomers and some chiral solutes. It was also found that the polarity of CD derivatives can be lowered both by chemically bonding it to polysiloxane and by diluting it in polysiloxane. The separation abilities of the polysiloxane anchored CDs (SP CD) are higher than that of the unbonded CDs (S CD) and the diluted S CD at lower column temperature. Hydrosilylation reaction is one of the best methods to lower the operating temperature of CDs. 展开更多
关键词 capillary gas chromatography stationary phase polysiloxane anchored β cyclodextrin derivative di substituted benzene isomers separation enantiomers separation
下载PDF
Rapid and real-time analysis of multi-component dissolved gas in seawater by Raman spectroscopy combined with continuous gas-liquid separator
10
作者 Dewang Yang Wenhua Li +5 位作者 Lei Guo Yuhang Ji Yanzhe Gong Junwei Chu Libin Du Yongmei Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS 2024年第9期146-153,共8页
Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement e... Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement efficiency,owing to the single gas sensor without the identification ability of multiple gases.In this work,a novel gas-liquid Raman detection method of monitoring the multi-component dissolved gases was proposed based on a continuous gas-liquid separator under a large difference of partial pressure.The limit of detection(LOD)of the gas Raman spectrometer could arrive at about 14 μl·L^(-1)for N_(2)gas.Moreover,based on the continuous gas-liquid separation process,the detection time of the dissolved gases could be largely decreased to about 200 s compared with that of the traditional detection method(30 min).Effect of equilibrium time on gas-liquid separation process indicated that the extracted efficiency and decay time of these dissolved gases was CO_(2)>O_(2)>N_(2).In addition,the analysis of the relationship between equilibrium time and flow speed indicated that the decay time decreased with the increase of the flow speed.The validation and application of the developed system presented its great potential for studying the components and spatiotemporal distribution of dissolved gases in seawater. 展开更多
关键词 Dissolved gas Rapid quantitative analysis gas-liquid separator gas-liquid Raman spectroscopy
下载PDF
Separation and Characterization of Nitrogen-Rich Components in Coker Gas Oils from Athabasca Bitumen
11
作者 许志明 赵锁奇 +2 位作者 J.R.Woods L.S.Kotlyar K.HChung 《Petroleum Science》 SCIE CAS CSCD 2004年第3期72-77,共6页
It is well known that gas oils from oilsands bitumen are difficult to hydrotreat. In order to develop the most appropriate flow sheet and operating conditions, a thorough knowledge of the molecular structure and beha... It is well known that gas oils from oilsands bitumen are difficult to hydrotreat. In order to develop the most appropriate flow sheet and operating conditions, a thorough knowledge of the molecular structure and behaviour of bitumen and its gas oil products is needed. In this work, the gas oil samples are fractionated in an attempt to isolate and identify the problematic molecular species for hydrotreating. It is found that the major nitrogen sources in coker gas oils are associated with relatively small pentane insoluble species and an even smaller, highly polar, hexane insoluble species. Structural information obtained for these fractions indicates that they are formed during the cracking of resin molecules. Nitrogen speciation shows that the pyrroles are the primary nitrogen type, with pyridines also being an important species. Both nitrogen species are undesirable in the hydrotreating process. Pyrroles in particular are subject to polymerisation, producing gums and sediments that foul filters and other equipment while pyridines can directly deactivate the hydrotreating catalyst. 展开更多
关键词 Coker gas oil pentane insoluble hexane insoluble separATION CHARACTERIZATION
下载PDF
Performance of Inner-core Supersonic Gas Separation Device with Droplet Enlargement Method 被引量:11
12
作者 马庆芬 胡大鹏 +4 位作者 贺高红 胡施俊 刘文伟 徐巧莲 王予新 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第6期925-933,共9页
To improve the separation performance of a supersonic gas separation device for the treatment of gas mixture with a single heavy component, a novel structure with shorter settlement distance was constructed and a meth... To improve the separation performance of a supersonic gas separation device for the treatment of gas mixture with a single heavy component, a novel structure with shorter settlement distance was constructed and a method of droplet enlargement was applied. A series of experiments were carried out in the improved separation device under various conditions, using air-ethanol vapor as the medium and micro water droplets as nucleation cen- ters. The effects of the inlet pressure, temperature and relative humidity, the swirling intensity, and mass flow rate of water on the separation performance were investigated. The separation was improved by increasing the inlet pressure and relative humidity. With the decrease of swirling intensity and mass flow rate of water, the separation efficiency increased first and then decreased. The inlet temperature had a slight effect on the separation. The results showed that the separation performance was effectively improved using the proposed structure and method, and the best separation in this study was obtained with the ethanol removal rate about 55% and dew point depression 27 K. The addition of water had little pollution to the air-ethanol vapor system since the water carry-over rate was within the range of -2 %-0 in most cases. 展开更多
关键词 supersonic gas separation gas mixture with a single heavy component heterogeneous nucleation cyclone gas/liquid separation
下载PDF
Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal 被引量:21
13
作者 Bin Wang Lin-Hua Xie +3 位作者 Xiaoqing Wang Xiao-Min Liu Jinping Li Jian-Rong Li 《Green Energy & Environment》 SCIE 2018年第3期191-228,共38页
The separation of gas molecules with similar physicochemical properties is of high importance but practically entails a substantial energy penalty in chemical industry. Meanwhile, clean energy gases such as H_2 and CH... The separation of gas molecules with similar physicochemical properties is of high importance but practically entails a substantial energy penalty in chemical industry. Meanwhile, clean energy gases such as H_2 and CH_4 are considered as promising candidates for the replacement of traditional fossil fuels. However, the technologies for the storage of these gases are still immature. In addition, the release of anthropogenic toxic gases into the atmosphere is a worldwide threat of growing concern. Both in academia and industry, considerable research efforts have been devoted to developing advanced porous materials for the effective and energy-efficient separation, storage, or capture of the related gases. In contrast to conventional inorganic porous materials such as zeolites and activated carbons, metal–organic frameworks(MOFs) are considered as a type of promising materials for gas separation and storage. In this contribution, we review the recent research advance of MOFs in some relevant applications, including CO_2 capture, O_2 purification, separation of light hydrocarbons, separation of noble gases, storage of gases(CH_4,H_2, and C_2 H_2) for energy, and removal of some gaseous air pollutants(NH_3, NO_2, and SO_2). Finally, an outlook regarding the challenges of the future research of MOFs in these directions is given. 展开更多
关键词 Metal–organic frameworks gas separation and storage Light hydrocarbon Harmful gas Air purification
下载PDF
Economic Comparison of Three Gas Separation Technologies for CO2 Capture from Power Plant Flue Gas 被引量:8
14
作者 YANG Hongjun FAN Shuanshi LANG Xuemei WANG Yanhong NIE Jianghua 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第4期615-620,共6页
Three gas separation technologies,chemical absorption,membrane separation and pressure swing adsorption,are usually applied for CO2 capture from flue gas in coal-fired power plants.In this work,the costs of the three ... Three gas separation technologies,chemical absorption,membrane separation and pressure swing adsorption,are usually applied for CO2 capture from flue gas in coal-fired power plants.In this work,the costs of the three technologies are analyzed and compared.The cost for chemical absorption is mainly from $30 to $60 per ton(based on CO2 avoided),while the minimum value is $10 per ton(based on CO2 avoided).As for membrane separation and pressure swing adsorption,the costs are $50 to $78 and $40 to $63 per ton(based on CO2 avoided),respectively.Measures are proposed to reduce the cost of the three technologies.For CO2 capture and storage process,the CO2 recovery and purity should be greater than 90%.Based on the cost,recovery,and purity,it seems that chemical absorption is currently the most cost-effective technology for CO2 capture from flue gas from power plants.However,membrane gas separation is the most promising alternative approach in the future,provided that membrane performance is further improved. 展开更多
关键词 CO2 capture cost flue gas chemical absorption membrane gas separation pressure swing adsorption
下载PDF
Effect of montmorillonite on hydrate-based methane separation from mine gas 被引量:7
15
作者 ZHANG Qiang WU Qiang +2 位作者 ZHANG Hui ZHANG Bao-yong XIA Ting 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期38-50,共13页
Three types of mine gas samples were used in the solutions of tetrahydrofuran(THF),sodium dodecyl sulfate(SDS)and THF-SDS with/without MMT respectively to investigate the effect of montmorillonite(MMT)on separation ch... Three types of mine gas samples were used in the solutions of tetrahydrofuran(THF),sodium dodecyl sulfate(SDS)and THF-SDS with/without MMT respectively to investigate the effect of montmorillonite(MMT)on separation characteristics of methane recovered from mine gas based on hydrate method.The partition coefficient,separation factor and recovery rate were used to evaluate the effects of MMT,and the selection factor was primarily proposed to define the selectivity of mine gas hydrate in the relative target gases.The experimental results indicate that MMT could improve the following factors including hydration separation factor,the selection factor,the partition coefficient,and the recovery rate.Furthermore,the effect of SDS on the function of MMT is analyzed in the process of hydration separation.Finally,due to the results of the experiment,it is concluded that MMT hydration mechanism explores the effect of MMT enrichment methane from mine gas. 展开更多
关键词 mine gas HYDRATE MONTMORILLONITE separation effect partition coefficient separation factor recovery rate selection factor
下载PDF
The combination of 1-octyl-3-methylimidazolium tetrafluorborate with TBAB or THF on CO2 hydrate formation and CH4 separation from biogas 被引量:4
16
作者 Gang Yue Aixian Liu +4 位作者 Qiang Sun Xingxun Li Wenjie Lan Lanying Yang Xuqiang Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第12期2495-2502,共8页
[C_8min] BF_4 was used in this work to combine with TBAB or THF for the investigation about thermodynamic and kinetic additives on CO_2 and CH_4/CO_2 hydrates. The results show that [C_8min] BF_4 has the inhibition ef... [C_8min] BF_4 was used in this work to combine with TBAB or THF for the investigation about thermodynamic and kinetic additives on CO_2 and CH_4/CO_2 hydrates. The results show that [C_8min] BF_4 has the inhibition effect on the equilibrium of hydrate formation. About the kinetic study, [C_8 min] BF_4 could improve the rate of CO_2 hydrate formation and increase the gas uptake in hydrate phase. At the same time, the combination of TBAB and [C8 min] BF_4 could increase the mole friction of CH_4 in residual gas comparing with the data in THF solution. CH_4 separation efficiency was strongly enhanced. Since that the size of CO_2 and CH_4 molecules are similar, CH_4 and CO_2 could form the similar hydrate, so the recovery of CH_4 from biogas decreases lightly. The CH_4 content in biogas can purified from 67 mol% to 77 mol% after one-stage hydrate formation. In addition, the combination of THF and[C_8 min] BF_4 do not have obvious promoting effect on CH_4 separation comparing with the gas separation results in pure THF solution. 展开更多
关键词 BIOgas gas separATION HYDRATE Ionic liquid
下载PDF
Separation of Fine Particles by Using Colloidal Gas Aphrons 被引量:4
17
作者 E.A.Mansur 王运东 戴猷元 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第2期286-289,共4页
This paper presents a method of separation of fine particles, of the order of a few microns or less, from aqueous media by flotation using colloidal gas aphrons (CGAs) generated in aqueous solutions. More than 150 exp... This paper presents a method of separation of fine particles, of the order of a few microns or less, from aqueous media by flotation using colloidal gas aphrons (CGAs) generated in aqueous solutions. More than 150 experiments were conducted to study the effects of surfactant type, surfactant concentration, CGAs flow rate, and particle concentration on the removal efficiency (fine particles of polystyrene were used as a target compound). The results indicate that CGAs, generated from cationic surfactant of hexdecyltrimethyl ammonicum bromide (HTAB) and anionic surfactant of sodium dodecylbenzne sulfonate (SDBS), are an effective method for the separation off ine particles of polystyrene from wastewater. The flotation yields are higher than 97%. 展开更多
关键词 separATION colloidal gas aphrons FLOTATION SURFACTANT
下载PDF
Capture and separation of CO_(2) from flue gas by coupling free and immobilized amines 被引量:4
18
作者 SHI Yao LI Wei 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2002年第4期451-456,共6页
A novel system was proposed for the capture and separation of CO 2 from flue gas. In this method, a resin was employed to regenerate the amine capturing CO 2 from flue gas at room temperature. The feasibility for ... A novel system was proposed for the capture and separation of CO 2 from flue gas. In this method, a resin was employed to regenerate the amine capturing CO 2 from flue gas at room temperature. The feasibility for the resin to regenerate amines such as MEA, MAE, TEA, and ammonia was demonstrated. It was also discovered that the resin could be regenerated by hot water. 展开更多
关键词 separATION CO_(2) flue gas AMINE
下载PDF
Studies on Oxygen Characteristics of YBa_2Cu_3O_(7-x) and Its Applications to Air Separation and Gas Purification 被引量:4
19
作者 杨德林 莫炯 +3 位作者 卢红霞 郭益群 高之爽 胡行 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第1期112-115,共4页
Oxygen diffusion and oxygen selective adsorption properties of rare earths material YBa_2Cu_3O_(7-x) (YBCO) were investigated by thermogravimetric, oxygen static adsorption and selectivity adsorption experiments. The ... Oxygen diffusion and oxygen selective adsorption properties of rare earths material YBa_2Cu_3O_(7-x) (YBCO) were investigated by thermogravimetric, oxygen static adsorption and selectivity adsorption experiments. The results show that YBCO is a very good deoxidizing material. The oxygen desorption of YBCO begins remarkably at about 400 ℃, mass loss can arrive at 1.2% of its original quantity at 800 ℃. Oxygen can be completely absorbed back into the sample again when temperature descends to 400 ℃. The oxygen adsorption selectivity, reproducibility and oxygen adsorption under very low oxygen partial pressure make the material desirable for air separation and gas purification. High purity nitrogen gas was produced with the YBCO molecular sieves in the air separation and gas purification experiments. 0.017 m^3 of high purity nitrogen (>99.9999%) can be obtained with 1 kg YBCO molecular sieve in one cycle. As a deoxidant, an obvious advantage of YBCO is that no hydrogen is needed in its applications. 展开更多
关键词 metal materials YBCO oxygen characters gas separation and purification rare earths
下载PDF
A pillared-layer metal-organic framework for efficient separation of C_(3)H_(8)/C_(2)H_(6)/CH_(4) in natural gas 被引量:2
20
作者 Pengtao Guo Miao Chang +2 位作者 Tongan Yan Yuxiao Li Dahuan Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第2期10-16,共7页
Metal-organic frameworks(MOFs)have great potentials as adsorbents for natural gas purification.However,the trade-off between selectivity and adsorption capacity remains a challenge.Herein,we report a pillared-layer me... Metal-organic frameworks(MOFs)have great potentials as adsorbents for natural gas purification.However,the trade-off between selectivity and adsorption capacity remains a challenge.Herein,we report a pillared-layer metal-organic framework Ni(HBTC)(bipy)for efficiently separating the C_(3)H_(8)/C_(2)H_(6)/CH_(4) mixture.The experimental results show that the adsorption capacity of C_(3)H_(8) and C_(2)H_(6) on Ni(HBTC)(bipy)are as high as 6.18 and 5.85 mmol·g^(-1),while only 0.93 mmol·g^(-1) for CH_(4) at 298 K and 100 kPa.Especially,the adsorption capacity of C_(3)H_(8) at 5 kPa can reach an unprecedented 4.52 mmol·g^(-1) and for C_(2)H_(6) it is 1.48 mmol·g^(-1) at 10 kPa.The ideal adsorbed solution theory predicted C_(3)H_(8)/CH_(4) selectivity is as high as 1857.0,superior to most of the reported materials.Breakthrough experiment results indicated that material could completely separate the C_(3)H_(8)/C_(2)H_(6)/CH_(4) mixture.Therefore,Ni(HBTC)(bipy)is a promising material for separation of natural gas. 展开更多
关键词 ADSORPTION Light hydrocarbons Metal-organic framework Natural gas SELECTIVITY separATION
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部