期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Reduction of VOC emissions by a membrane-based gas absorption process 被引量:10
1
作者 LI Rui, XU Jun, WANG Lianjun, LI Jiansheng, SUN Xiuyun School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第8期1096-1102,共7页
A membrane-based gas absorption (MGA) process was evaluated for the removal of volatile organic compounds (VOCs) based on C6H6/N2 mixture. The absorption of C6H6 from a C6H6/N2 mixture was investigated using a hyd... A membrane-based gas absorption (MGA) process was evaluated for the removal of volatile organic compounds (VOCs) based on C6H6/N2 mixture. The absorption of C6H6 from a C6H6/N2 mixture was investigated using a hydrophobic polypropylene hollow fiber membrane contactor and the aqueous solution of N-formyl morpholine (NFM) as absorbent. The effects of various factors on the overall mass transfer coefficient was investigated. The experimental results showed that the removal efficiency of C6H6 could reach 99.5% in present studied system. A mathematical model based on resistance-in-series concept was presented to predict the value of overall mass transfer coefficient. The average error between the predicted and experimental values is 7.9%. In addition, conventional packed columns for VOCs removal was also evaluated for comparison. 展开更多
关键词 VOCs removal membrane contactor membrane-based gas absorption mass transfer model
下载PDF
Advances in Atmospheric Radiation:Theories,Models,and Their Applications.PartⅠ:Atmospheric Gas Absorption and Particle Scattering
2
作者 Hua ZHANG Liting LIU +9 位作者 Lei BI Wushao LIN Chao LIU Bingqi YI Lei LIU Qi CHEN Xiaodong WEI Husi LETU Zhengqiang LI Wenwen LI 《Journal of Meteorological Research》 SCIE CSCD 2024年第2期151-182,共32页
Atmospheric radiation is a major branch of atmospheric physics that encompasses the fundamental theories of atmospheric absorption,particle scattering(aerosols and clouds),and radiative transfer.Specifically,the simul... Atmospheric radiation is a major branch of atmospheric physics that encompasses the fundamental theories of atmospheric absorption,particle scattering(aerosols and clouds),and radiative transfer.Specifically,the simulations of atmospheric gaseous absorption and scattering properties of particles are the essential components of atmospheric radiative transfer models.Atmospheric radiation has important applications in weather,climate,data assimilation,remote sensing,and atmospheric detection studies.In PartⅠ,a comprehensive review of the progress in the field of gas absorption and particle scattering research over the past 30 years with a particular emphasis on the contributions from Chinese scientists is presented.The review of gas absorption includes the construction of absorption databases,the impact of different atmospheric absorption algorithms on radiative calculations,and their applications in weather and climate models and remote sensing.The review on particle scattering starts with the theoretical and computational methods and subsequently explores the optical modeling of aerosols and clouds in remote sensing and atmospheric models.Additionally,the paper discusses potential future research directions in this field. 展开更多
关键词 atmospheric radiation gas absorption particle scattering
原文传递
Lean and interpretable digital twins for building energy monitoring - A case study with smart thermostatic radiator valves and gas absorption heat pumps
3
作者 Massimiliano Manfren Patrick AB James +1 位作者 Victoria Aragon Lamberto Tronchin 《Energy and AI》 2023年第4期645-659,共15页
The transition to low carbon energy systems poses challenges in terms of energy efficiency.In building refur-bishment projects,efficient technologies such as smart controls and heat pumps are increasingly being used a... The transition to low carbon energy systems poses challenges in terms of energy efficiency.In building refur-bishment projects,efficient technologies such as smart controls and heat pumps are increasingly being used as a substitute for conventional technologies with the aim of reducing carbon emissions and determining operational energy and cost savings,together with other benefits.Measured building performance,however,often reveals a significant gap between the predicted energy use(design stage)and actual energy use(operation stage).For this reason,lean and interpretable digital twins are needed for building energy monitoring aimed at persistence of savings and continuous performance improvement.In this research,interpretable regression models are built with data at multiple temporal resolutions(monthly,daily and hourly)and seamlessly integrated with the goal of verifying the performance improvements due to Smart thermostatic radiator valves(TRVs)and gas absorption heat pumps(GAHPs)as well as giving insights on the performance of the building as a whole.Further,as part of modelling research,time of week and temperature(TOWT)approach is reformulated and benchmarked against its original implementation.The case study chosen is Hale Court sheltered housing,located in the city of Portsmouth(UK).This building has been used for the field-testing of innovative technologies such as TRVs and GAHPs within the EU Horizon 2020 project THERMOSS.The results obtained are used to illustrate possible extensions of the use of energy signature modelling,highlighting implications for energy management and innovative building technologies development. 展开更多
关键词 Data-driven methods Digital twins Energy signature Thermostatic radiator valves gas absorption heat pumps Energy management Energy Analytics
原文传递
Parameterization of the Absorption of the H_(2)O Continuum,CO_(2),O_(2),and Other Trace Gases in the Fu-Liou Solar Radiation Program 被引量:3
4
作者 张凤 曾庆存 +1 位作者 Y.GU K.N.LIOU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第4期545-558,共14页
The absorption properties of the water vapor continuum and a number of weak bands for H2O, O2, CO2, CO, N2O, CH4, and O3 in the solar spectrum are incorporated into the Fu-Liou radiation parameterization program by us... The absorption properties of the water vapor continuum and a number of weak bands for H2O, O2, CO2, CO, N2O, CH4, and O3 in the solar spectrum are incorporated into the Fu-Liou radiation parameterization program by using the correlated k-distribution method (CKD) for the sorting of absorption lines. The overlap absorption of the H2O lines and the H2O continuum (2500-14500 cm-1) are treated by taking the two gases as a single-mixture gas in transmittance calculations. Furthermore, in order to optimize the computation efforts, CO2 and CH4 in the spectral region 2850-5250 cm-1 are taken as a new single-mixture gas as well. For overlap involving other absorption lines in the Fu-Liou spectral bands, the authors adopt the multiplication rule for transmittance computations under which the absorption spectra for two gases are assumed to be uncorrelated. Compared to the line-by-line (LBL) computation, it is shown that the errors in fluxes introduced by these two approaches within the context of the CKD method are small and less than 0.48% for the H2O line and continuum in the 2500-14500 cm-1 solar spectral region, -1% for H2O (line)+H2O (continuum)+CO2+CH4 in the spectral region 2850-5250 cm-1, and -1.5% for H2O (line)+H2O (continuum)+O2 in the 7700-14500 cm-1 spectral region. Analysis also demonstrates that the multiplication rule over a spectral interval as wide as 6800 cm-1 can produce acceptable errors with a maximum percentage value of about 2% in reference to the LBL calculation. Addition of the preceding gases increases the absorption of solar radiation under all sky conditions. For clear sky, the increase in instantaneous solar absorption is about 9%-13% (~12 W m^2) among which the H2O continuum produces the largest increase, while the contributions from O2 and CO2 rank second and third, respectively. In cloudy sky, the addition of absorption amounts to about 6-9 W m-2. The new, improved program with the incorporation of the preceding gases produces a smaller solar absorption in clouds due to the reduced solar flux reaching the cloud top. 展开更多
关键词 non-gray gas absorption correlated k-distribution method Fu-Liou code
下载PDF
Gas cyclone-liquid jet absorption separator used for treatment of tail gas containing HCl in titanium dioxide industry
5
作者 Liwang Wang Hualin Wang +2 位作者 Liang Ma Zhanghuang Yang Erwen Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期435-446,共12页
In the titanium dioxide industry,there is a lack of a low-cost and high-efficiency treatment method for chloride containing tail gas.In this paper,the removal of HCl from the titanium dioxide industry by gas cyclone-l... In the titanium dioxide industry,there is a lack of a low-cost and high-efficiency treatment method for chloride containing tail gas.In this paper,the removal of HCl from the titanium dioxide industry by gas cyclone-liquid jet separator was studied,while Ca(OH)_(2),Na_(2)CO_(3),NaOH solution,and water were used as absorbents.This paper investigated the influence of gas cyclone-liquid jet separator’s various process parameters on the removal rate of hydrogen chloride gas.The mechanism of mass transfer in the process of removing hydrogen chloride was discussed,and the effect and feasibility of HCl gas removal in the gas cyclone-liquid jet absorption separator were studied.The results showd that the removal efficiency of hydrogen chloride maintained above 95%,up to 99.9%,and the total mass transfer coefficient reached0.28 mol·m^(-3)·s^(-1)·k Pa^(-1).Under the same conditions,the absorption effect and total mass transfer coefficient of weak basic absorption liquid can be greatly improved by increasing the flow rate of absorption liquid,but the absorption effect and total mass transfer coefficient of strong alkaline absorption liquid can’t be improved obviously.The larger the inlet gas volume,the higher the gas concentration,the lower the absorption efficiency and the lower the total volumetric mass transfer coefficient. 展开更多
关键词 Wet dechlorination HCL Tail gas gas cyclone-liquid jet absorption SEPARATOR Titanium dioxide industry
下载PDF
Comparison between Spectrophotometry and Gas Phase Molecular Absorption Spectrometry for Determination of Nitrite Nitrogen in Flue Gas
6
作者 Jun SUN Tianjun DU Hualin GONG 《Meteorological and Environmental Research》 CAS 2022年第6期60-62,共3页
Spectrophotometry and gas phase molecular absorption spectrometry for determination of nitrite nitrogen in flue gas were compared.KOH absorption solution was used to absorb nitrite nitrogen in flue gas,and the concent... Spectrophotometry and gas phase molecular absorption spectrometry for determination of nitrite nitrogen in flue gas were compared.KOH absorption solution was used to absorb nitrite nitrogen in flue gas,and the concentration of nitrite nitrogen in the absorption solution was determined by spectrophotometry and gas phase molecular absorption spectrometry to obtain the concentration of nitrite nitrogen in flue gas.The experiments show that both methods are accurate and reliable. 展开更多
关键词 SPECTROPHOTOMETRY gas phase molecular absorption spectrometry Flue gas Nitrite nitrogen COMPARISON
下载PDF
Kinetics study of CO_(2) absorption in potassium carbonate solution promoted by diethylenetriamine
7
作者 Rouzbeh Ramezani Renzo Di Felice 《Green Energy & Environment》 SCIE CSCD 2021年第1期83-90,共8页
In this work,characterization and kinetics of CO2 absorption in potassium carbonate(K_(2)CO_(3))solution promoted by diethylenetriamine(DETA)were investigated.Kinetics measurements were performed using a stirred cell ... In this work,characterization and kinetics of CO2 absorption in potassium carbonate(K_(2)CO_(3))solution promoted by diethylenetriamine(DETA)were investigated.Kinetics measurements were performed using a stirred cell reactor in the temperature range of 303.15–323.15 K and total concentration up to 2.5 kmol m3.The density,viscosity,physical solubility,CO_(2) diffusivity and absorption rate of CO_(2) in the solution were determined.The reaction kinetics between CO_(2) and K2CO3þDETA solution were examined.Pseudo-first order kinetic constants were also predicted by zwitterion mechanism.It was revealed that the addition of small amounts of DETA to K_(2)CO_(3) results in a significant enhancement in CO_(2) absorption rate.The reaction order and activation energy were found to be 1.6 and 35.6 kJ mol1,respectively.In terms of reaction rate constant,DETA showed a better performance compared to the other promoters such as MEA,EAE,proline,arginine,taurine,histidine and alanine. 展开更多
关键词 gas absorption CO_(2)capture Reaction rate constant Kinetic study absorption rate
下载PDF
Experimental study on the desulfurization and evaporation characteristics of Ca(OH)_(2) droplets
8
作者 Yilin Song Yize Zhang Hao Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期127-135,共9页
The experiments were conducted to focus on the desulfurization and evaporation characteristics of lime slurry droplets at 298-383 K. We designed an evaporation-reaction chamber with quartz glass windows.The monodisper... The experiments were conducted to focus on the desulfurization and evaporation characteristics of lime slurry droplets at 298-383 K. We designed an evaporation-reaction chamber with quartz glass windows.The monodisperse slurry droplet stream was injected into the evaporation reaction chamber, and the inlet gas components(air, air + SO_(2)) were introduced into the chamber. We applied the magnified digital in-line holography to measure the droplet parameters and calculated the evaporation rate. The effects of temperature, droplet concentration, and SO_(2) concentration on the evaporation rate of Ca(OH)_(2) droplets were discussed. Moreover, the Ca(OH)_(2) droplets under different experimental conditions were sampled,and the droplets were observed and analyzed using an off-line microscope. The evaporation rate of the Ca(OH)_(2) droplet increased at first, and then decreased during the falling process, and remained constant at last. The average evaporation rate of the Ca(OH)_(2) droplets increased significantly with the temperature increasing. 展开更多
关键词 Magnified digital in-line holography EVAPORATION gas–liquid absorption reaction Ca(OH)_(2) Micro-droplet
下载PDF
Gas leakage monitoring with scanned-wavelength direct absorption spectroscopy 被引量:1
9
作者 张帅 刘文清 +6 位作者 张玉钧 束小文 于殿强 阚瑞峰 董金婷 耿辉 刘建国 《Chinese Optics Letters》 SCIE EI CAS CSCD 2010年第5期443-446,共4页
A natural gas leakage detector based on scanned-wavelength direct absorption spectroscopy is described. The sensor employs a multi-channel scanned-wavelength direct absorption strategy.It has the potential to simultan... A natural gas leakage detector based on scanned-wavelength direct absorption spectroscopy is described. The sensor employs a multi-channel scanned-wavelength direct absorption strategy.It has the potential to simultaneously monitor methane and hydrogen sulfide in open path environment.Traditionally,scanned-wavelength direct absorption spectroscopy is the technique choice for natural gas leakage applications because of its simplicity,accuracy,and stability.We perform the gas sensor using direct-absorption wavelength scans with isolated features at 1-kHz repetition rate and the center wavelength is stabilized at the center of the 2v_3 band R(3) line of methane(1.65μm) and the(v_1+v_2+v_3) combination band of hydrogen sulfide(1.57μm),respectively.The influence of light intensity fluctuations can be eliminated by using scanned-wavelength direct absorption spectroscopy.Because of the fast wavelength scanning,the sensor has a response time of less than 0.1 s.The sensor can be configured to sense leakages in path-integrated concentrations of,for example,100-ppm·m hydrogen sulfide and 10-ppm·m methane. 展开更多
关键词 gas absorption? ?gas fuel purification? ?Hydrogen? ?Methane? ?Natural gas? ?Sensors? ?Wavelength
原文传递
Polarization-Insensitive Hybrid Plasmonic Waveguide Design for Evanescent Field Absorption Gas Sensor
10
作者 Nikolay Lvovich Kazanskiy Svetlana Nikolaevna Khonina Muhammad Ali Butt 《Photonic Sensors》 SCIE EI CSCD 2021年第3期279-290,共12页
We propose a polarization-insensitive design of a hybrid plasmonic waveguide(HPWG)optimized at the 3.392µm wavelength which corresponds to the absorption line of methane gas.The waveguide design is capable of pro... We propose a polarization-insensitive design of a hybrid plasmonic waveguide(HPWG)optimized at the 3.392µm wavelength which corresponds to the absorption line of methane gas.The waveguide design is capable of providing high mode sensitivity(Smode)and evanescent field ratio(EFR)for both transverse electric(TE)and transverse magnetic(TM)hybrid modes.The modal analysis of the waveguide is performed via 2-dimension(2D)and 3-dimension(3D)finite element methods(FEMs).At optimized waveguide parameters,Smode and EFR of 0.94 and 0.704,can be obtained for the TE hybrid mode,respectively,whereas the TM hybrid mode can offer Smode and EFR of 0.86 and 0.67,respectively.The TE and TM hybrid modes power dissipation of~3 dB can be obtained for a 20-µm-long hybrid plasmonic waveguide at the 60%gas concentration.We believe that the highly sensitive waveguide scheme proposed in this work overcomes the limitation of the polarization controlled light and can be utilized in gas sensing applications. 展开更多
关键词 Hybrid plasmonic waveguide finite element method methane gas evanescent field absorption gas sensor polarization-insensitive
原文传递
Spectroscopy system based on a single quantum cascade laser for simultaneous detection of CO and CO_2
11
作者 魏敏 叶擎昊 +9 位作者 阚瑞峰 陈兵 杨晨光 许振宇 陈祥 阮俊 范雪丽 王薇 胡迈 刘建国 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期368-373,共6页
A quantum cascade laser(QCL) based system for simultaneous detection of CO and CO_2 is developed.The QCL can scan over two neighboring CO(2055.40 cm^(-1)) and CO_2(2055.16 cm^(-1)) lines with a single curren... A quantum cascade laser(QCL) based system for simultaneous detection of CO and CO_2 is developed.The QCL can scan over two neighboring CO(2055.40 cm^(-1)) and CO_2(2055.16 cm^(-1)) lines with a single current scan.The wavelength modulation spectroscopy( f = 20 k Hz) is utilized to enhance the signal-to-noise ratio.A white cell with an effective optical path length of 74 m is used.The calibration of the sensor is performed and minimum detection limits of 1.3 ppb(1 × 10^(-9))for CO and 0.44 ppm(1 × 10^(-6)) for CO_2 are achieved. 展开更多
关键词 infrared absorption spectroscope quantum cascade lasers wavelength modulation spectroscopy greenhouse gas
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部