BACKGROUND:Emergency patients with sepsis or septic shock are at high risk of death.Despite increasing attention to microhemodynamics,the clinical use of advanced microcirculatory assessment is limited due to its shor...BACKGROUND:Emergency patients with sepsis or septic shock are at high risk of death.Despite increasing attention to microhemodynamics,the clinical use of advanced microcirculatory assessment is limited due to its shortcomings.Since blood gas analysis is a widely used technique reflecting global oxygen supply and consumption,it may serve as a surrogate for microcirculation monitoring in septic treatment.METHODS:We performed a search using PubMed,Web of Science,and Google scholar.The studies and reviews that were most relevant to septic microcirculatory dysfunctions and blood gas parameters were identified and included.RESULTS:Based on the pathophysiology of oxygen metabolism,the included articles provided a general overview of employing blood gas analysis and its derived set of indicators for microhemodynamic monitoring in septic care.Notwithstanding flaws,several parameters are linked to changes in the microcirculation.A comprehensive interpretation of blood gas parameters can be used in order to achieve hemodynamic optimization in septic patients.CONCLUSION:Blood gas analysis in combination with clinical performance is a reliable alternative for microcirculatory assessments.A deep understanding of oxygen metabolism in septic settings may help emergency physicians to better use blood gas analysis in the evaluation and treatment of sepsis and septic shock.展开更多
This study explored the synergistic interaction of sewage sludge(SS)and distillation residue(DR)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analy...This study explored the synergistic interaction of sewage sludge(SS)and distillation residue(DR)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric analysis with mass spectrometry(TGA-MS).The results reveal the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/DR.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in ash fractions,while the antagonistic effect is mainly due to the melting of DR on the surface of SS particles during pyrolysis and the reaction of SS ash with alkali metals to form inert substances.SS/DR co-pyrolysis reduces the yielding of coke and gas while increasing tar production.This study will promote the reduction,recycling,and harmless treatment of hazardous solid waste.展开更多
This study explored the synergistic interaction of sewage sludge(SS)and automotive paint sludge(PS)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric an...This study explored the synergistic interaction of sewage sludge(SS)and automotive paint sludge(PS)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric-mass spectrometry(TGA-MS).The result reveals the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/PS.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in PS,while the main source of the antagonistic effect is that,during the mechanical mixing process,the SS/PS is converted from the particulate form into a dough-like rubbery which contributes to the film-forming effect,hindering the volatilization of volatile components.SS/PS co-pyrolysis reduces the yielding of tar production while increasing coke and gas.This study will provide some in-depth insights into the co-pyrolysis of SS/PS,and offer theoretical support for the subsequent research on the collaborative disposal processes in cement kilns.展开更多
BACKGROUND Laparoscopic-assisted radical gastrectomy(LARG)is the standard treatment for early-stage gastric carcinoma(GC).However,the negative impact of this proce-dure on respiratory function requires the optimized i...BACKGROUND Laparoscopic-assisted radical gastrectomy(LARG)is the standard treatment for early-stage gastric carcinoma(GC).However,the negative impact of this proce-dure on respiratory function requires the optimized intraoperative management of patients in terms of ventilation.AIM To investigate the influence of pressure-controlled ventilation volume-guaranteed(PCV-VG)and volume-controlled ventilation(VCV)on blood gas analysis and pulmonary ventilation in patients undergoing LARG for GC based on the lung ultrasound score(LUS).METHODS The study included 103 patients with GC undergoing LARG from May 2020 to May 2023,with 52 cases undergoing PCV-VG(research group)and 51 cases undergoing VCV(control group).LUS were recorded at the time of entering the operating room(T0),20 minutes after anesthesia with endotracheal intubation(T1),30 minutes after artificial pneumoperitoneum(PP)establishment(T2),and 15 minutes after endotracheal tube removal(T5).For blood gas analysis,arterial partial pressure of oxygen(PaO_(2))and partial pressure of carbon dioxide(PaCO_(2))were observed.Peak airway pressure(P_(peak)),plateau pressure(Pplat),mean airway pressure(P_(mean)),and dynamic pulmonary compliance(C_(dyn))were recorded at T1 and T2,1 hour after PP establishment(T3),and at the end of the operation(T4).Postoperative pulmonary complications(PPCs)were recorded.Pre-and postoperative serum interleukin(IL)-1β,IL-6,and tumor necrosis factor-α(TNF-α)were measured by enzyme-linked immunosorbent assay.RESULTS Compared with those at T0,the whole,anterior,lateral,posterior,upper,lower,left,and right lung LUS of the research group were significantly reduced at T1,T2,and T5;in the control group,the LUS of the whole and partial lung regions(posterior,lower,and right lung)decreased significantly at T2,while at T5,the LUS of the whole and some regions(lateral,lower,and left lung)increased significantly.In comparison with the control group,the whole and regional LUS of the research group were reduced at T1,T2,and T5,with an increase in PaO_(2),decrease in PaCO_(2),reduction in P_(peak) at T1 to T4,increase in P_(mean) and C_(dyn),and decrease in Pplat at T4,all significant.The research group showed a significantly lower incidence of PPCs than the control group within 3 days postoperatively.Postoperative IL-1β,IL-6,and TNF-αsignificantly increased in both groups,with even higher levels in the control group.CONCLUSION LUS can indicate intraoperative non-uniformity and postural changes in pulmonary ventilation under PCV-VG and VCV.Under the lung protective ventilation strategy,the PCV-VG mode more significantly improved intraop-erative lung ventilation in patients undergoing LARG for GC and reduced lung injury-related cytokine production,thereby alleviating lung injury.展开更多
BACKGROUND The investigation of plant-based therapeutic agents in medicinal plants has revealed their presence in the extracts and provides the vision to formulate novel techniques for drug therapy.Vitex negundo(V.neg...BACKGROUND The investigation of plant-based therapeutic agents in medicinal plants has revealed their presence in the extracts and provides the vision to formulate novel techniques for drug therapy.Vitex negundo(V.negundo),a perennial herb belonging to the Varbanaceae family,is extensively used in conventional medication.AIM To determine the existence of therapeutic components in leaf and callus extracts from wild V.negundo plants using gas chromatography-mass spectrometry(GCMS).METHODS In this study,we conducted GC-MS on wild plant leaf extracts and correlated the presence of constituents with those in callus extracts.Various growth regulators such as 6-benzylaminopurine(BAP),2,4-dichlorophenoxyacetic acid(2,4-D),α-naphthylacetic acid(NAA),and di-phenylurea(DPU)were added to plant leaves and in-vitro callus and grown on MS medium.RESULTS The results clearly indicated that the addition of BAP(2.0 mg/L),2,4-D(0.2 mg/mL),DPU(2.0 mg/L)and 2,4-D(0.2 mg/mL)in MS medium resulted in rapid callus development.The plant profile of Vitex extracts by GC-MS analysis showed that 24,10,and 14 bioactive constituents were detected in the methanolic extract of leaf,green callus and the methanolic extract of white loose callus,respectively.CONCLUSION Octadecadienoic acid,hexadecanoic acid and methyl ester were the major constituents in the leaf and callus methanolic extract.Octadecadienoic acid was the most common constituent in all samples.The maximum concentration of octadecadienoic acid in leaves,green callus and white loose callus was 21.93%,47.79%and 40.38%,respectively.These findings demonstrate that the concentration of octadecadienoic acid doubles in-vitro compared to in-vivo.In addition to octadecadienoic acid;butyric acid,benzene,1-methoxy-4-(1-propenyl),dospan,tridecanedialdehyde,methylcyclohexenylbutanol,chlorpyrifos,n-secondary terpene diester,anflunine and other important active compounds were also detected.All these components were only available in callus formed in-vitro.This study showed that the callus contained additional botanical characteristics compared with wild plants.Due to the presence of numerous bioactive compounds,the medical use of Vitex for various diseases has been accepted and the plant is considered an important source of therapeutics for research and development.展开更多
Aiming at the change in intake air flow caused by the injection of natural gas in intake manifold if one simply replaces the gasoline injector with natural gas injector with the installing position of injector in inta...Aiming at the change in intake air flow caused by the injection of natural gas in intake manifold if one simply replaces the gasoline injector with natural gas injector with the installing position of injector in intake manifold unchanged, and also the reflection of gas toward intake manifold inlet resulted from the impingement between the injected large volumetric natural gas jet and intake valve, an impulsively started natural gas jet injected from a gas injector is characterized as a three-dimensional unsteady compressible viscous turbulent flow, based on which its transient development process is numerically analyzed using general-purpose CFD codes. The predicted velocity vector maps show a vortex, which indicates the occurrence of an unsteady state jet region, is formed downstream of the jet. A schlieren apparatus is utilized to get several groups of visible schlieren photographs of natural gas jets. In the experiment, photographs of natural gas jets taken by a CCD camera are laid in a portrait processor where the shapes, tip penetration distance and injection angles of the gas jets are investigated. Comparisons between predicted results and measurements indicate an excellent agreement between simulations and experimental results.展开更多
The increasing intensity and frequency of sand-dust storms in China has led to greater prominence of associated environmentaland health issues. Many studies have focused on the health effects of air particulate contam...The increasing intensity and frequency of sand-dust storms in China has led to greater prominence of associated environmentaland health issues. Many studies have focused on the health effects of air particulate contaminants, but fewformal investigations have studied the effects of sand-dust storms on human and animal health. The aim of this study wasto investigate the effects of dust storms on rat lung by using high resolution computed tomography (HRCT) and blood gasanalysis through a wind tunnel simulating. We found that the rat lung damage effects can be detected by the HRCT imagingafter exposure to sand-dust storm environments, but had no obvious result through blood gas analysis. Exposure durationspositively correlated with the damage degree to lung tissue. These will provide some evidence for clinical diagnosis ofnon-occupational pneumoconiosis.展开更多
In this paper, we present simultaneous multiple pollutant gases (CO2, CO, and NO) measurements by using the non-dispersive infrared (NDIR) technique. A cross-correlation correction method is proposed and used to c...In this paper, we present simultaneous multiple pollutant gases (CO2, CO, and NO) measurements by using the non-dispersive infrared (NDIR) technique. A cross-correlation correction method is proposed and used to correct the cross-interferences among the target gases. The calculation of calibration curves is based on least-square fittings with third-order polynomials, and the interference functions are approximated by linear curves. The pure absorbance of each gas is obtained by solving three simultaneous equations using the fitted interference functions. Through the interference correction, the signal created at each filter channel only depends on the absorption of the intended gas. Gas mixture samples with different concentrations of CO2, CO, and NO are pumped into the sample cell for analysis. The results show that the measurement error of each gas is less than 4.5%.展开更多
Interfacial reactions in lithium-ion batteries often involve gaseous reaction products.Mechanistic investigation of material degradation processes requires a technique to identify and quantify these gases in battery c...Interfacial reactions in lithium-ion batteries often involve gaseous reaction products.Mechanistic investigation of material degradation processes requires a technique to identify and quantify these gases in battery cells.Online electrochemical mass spectrometry(OEMS)is an operando gas analysis method that continuously samples the headspace of a custom battery cell.Real-time gas analysis by quantitative OEMS was used to create mechanistic understanding of battery degradation reactions,some of which will be highlight in this article.展开更多
Estimating the intensity of outbursts of coal and gas is important as the intensity and frequency of outbursts of coal and gas tend to increase in deep mining. Fully understanding the major factors contributing to coa...Estimating the intensity of outbursts of coal and gas is important as the intensity and frequency of outbursts of coal and gas tend to increase in deep mining. Fully understanding the major factors contributing to coal and gas outbursts is significant in the evaluation of the intensity of the outburst. In this paper, we discuss the correlation between these major factors and the intensity of the outburst using Analysis of Variance(ANOVA) and Contingency Table Analysis(CTA). Regression analysis is used to evaluate the impact of these major factors on the intensity of outbursts based on physical experiments. Based on the evaluation, two simple models in terms of multiple linear and nonlinear regression were constructed for the prediction of the intensity of the outburst. The results show that the gas pressure and initial moisture in the coal mass could be the most significant factors compared to the weakest factor-porosity. The P values from Fisher's exact test in CTA are: moisture(0.019), geostress(0.290), porosity(0.650), and gas pressure(0.031). P values from ANOVA are moisture(0.094), geostress(0.077), porosity(0.420), and gas pressure(0.051). Furthermore, the multiple nonlinear regression model(RMSE: 3.870) is more accurate than the linear regression model(RMSE: 4.091).展开更多
Objective:To systematic evaluation by the dorsalis pedis artery puncture for bed patients blood gas analysis of application effect of impact.Methods:A randomized controlled trial of the effect of arterial blood extrac...Objective:To systematic evaluation by the dorsalis pedis artery puncture for bed patients blood gas analysis of application effect of impact.Methods:A randomized controlled trial of the effect of arterial blood extraction on blood gas analysis in PubMed,CNKI,Wanfang database and VIP database.After selecting the literature,extracting the data and evaluating the quality of the literature.Meta- analysis was carried out by RevMan 5.3 software.Results:Twelve randomized controlled trials were included and 1696 patients were enrolled.After meta-analysis,the arterial puncture can effectively improve the success of arterial puncture in patients with bed [Z = 5.78,95%CI(1.90,3.66),P<0.001],reduce the occurrence of hematoma [Z = 4.27,95%CI(0.19,0.54),P<0.001],reduce the mistaken into the vein [Z = 4.60,95%CI(0.08,0.36),P<0.001],reduce cyanosis [Z = 2.84,95%CI(0.23,0.81),P<0.008],the difference was statistically significant.Conclusion:Dorsalis pedis artery puncture can improve the success rate of blood gas analysis in bedridden patients,reduce the incidence of hematoma and the incidence of venous leakage,and can be widely used in clinical practice.展开更多
An array composed of sixteen gas sensors was constructed to analyze gas mixtures quantitatively. The data of responses from the sensor array to ethane, propane and propylene were treated by three-layer ANN with BP alg...An array composed of sixteen gas sensors was constructed to analyze gas mixtures quantitatively. The data of responses from the sensor array to ethane, propane and propylene were treated by three-layer ANN with BP algorithms and PLS. The analytical results indicated that the concentration predicted with ANN is better than that with PLS. The average prediction errors for ethane, propane and propylene were 5.11%, 8.28%, 2.64%, respectively.展开更多
A new GC/MS method for detection and identification of 19 anabolic steroids in human urine is presented.The procedure involves adsorption and isolation on a macroporous XAD-2 resin,enzymatic hydrolysis,alkaline extrac...A new GC/MS method for detection and identification of 19 anabolic steroids in human urine is presented.The procedure involves adsorption and isolation on a macroporous XAD-2 resin,enzymatic hydrolysis,alkaline extraction,derivatization,GC separation and MS detec- tion.Gas chromatographic-mass spectrometric data illustrate artifacts arising from enzymatic hydrolysis of steroid glucuronides and the structural characterization of their metabolites. Using this method,metabolic studies of these steroids in human urine were made after their ingestion by normal and healthy male volunteers.This method was proven to be suitable for large-scale routine analysis of anabolic steroids and was used successfully in passing the doping control test held by the Medical Commission of the International Olympic Committee.展开更多
The cellular fatty acids from a total of 62 strains of Torulopsis glabrata (T. glabrata), Saccharomyces cerevisiae (S. cerevisiae), Rhodotorula rubra (R. rubra), Candida krusei (C. krusei), Candida albicans (C. albica...The cellular fatty acids from a total of 62 strains of Torulopsis glabrata (T. glabrata), Saccharomyces cerevisiae (S. cerevisiae), Rhodotorula rubra (R. rubra), Candida krusei (C. krusei), Candida albicans (C. albicans) and Candida tropicalis (C. tropicalis) were examined by capillary gas chromatography. On the basis of fatty acid composition, all strains could be differentiated as to species. These results indicate that capillary gas chromatographic analysis of cellular fatty acids is likely to be useful for rapid identification or grouping of newer isolates of yeast species.展开更多
Sulfur dioxide has been found to decrease the chemiluminescence of luminol-iodine system.A new determination method for sulfur dioxide in atmosphere is developed by applying this reaction to a flow injection gas diffu...Sulfur dioxide has been found to decrease the chemiluminescence of luminol-iodine system.A new determination method for sulfur dioxide in atmosphere is developed by applying this reaction to a flow injection gas diffusion separation system.This permits the determination of sulfur dioxide selectively and rapidly.展开更多
Dissolved gas analysis is the most widely used diagnostic test in power transformers. The aim of this paper is to introduce the dissolved gas analysis (DGA) methods able to diagnose the transformer conditions. The fau...Dissolved gas analysis is the most widely used diagnostic test in power transformers. The aim of this paper is to introduce the dissolved gas analysis (DGA) methods able to diagnose the transformer conditions. The faults cause the transformer oil, pressboard, and other insulating materials to decompose and generate gases, some of which dissolve in the oil. The results of DGA must be accurate if faults are to be diagnosed reliably. There are different established methods used in industry for interpreting DGA results. We will compare the result of IEEE Key Gas Methods and Rogers’ Ratios. The transformer conditions are evaluated by the Key Gas Method with total combustible gas method (TCGM) and then verified by the Rogers’ Ratios. As result, the aging pattern and trend of the power transformer deterioration can be determined. The 30 sample data from IEEE with known faults and dissolved gas concentrations were used as the basis of comparison.展开更多
BACKGROUND Severe pneumonia is a common severe respiratory infection worldwide,and its treatment is challenging,especially for patients in the intensive care unit(ICU).AIM To explore the effect of communication and co...BACKGROUND Severe pneumonia is a common severe respiratory infection worldwide,and its treatment is challenging,especially for patients in the intensive care unit(ICU).AIM To explore the effect of communication and collaboration between nursing teams on the treatment outcomes of patients with severe pneumonia in ICU.METHODS We retrospectively analyzed 60 patients with severe pneumonia who were treated at the ICU of the hospital between January 1,2021 and December 31,2023.We compared and analyzed the respiratory mechanical indexes[airway resistance(Raw),mean airway pressure(mPaw),peak pressure(PIP)],blood gas analysis indexes(arterial oxygen saturation,arterial oxygen partial pressure,and oxygenation index),and serum inflammatory factor levels[C-reactive protein(CRP),procalcitonin(PCT),cortisol(COR),and high mobility group protein B1(HMGB1)]of all patients before and after treatment.RESULTS Before treatment,there was no significant difference in respiratory mechanics index and blood gas analysis index between 2 groups(P>0.05).However,after treatment,the respiratory mechanical indexes of patients in both groups were significantly improved,and the improvement of Raw,mPaw,plateau pressure,PIP and other indexes in the combined group after communication and collaboration with the nursing team was significantly better than that in the single care group(P<0.05).The serum CRP and PCT levels of patients were significantly decreased,and the difference was statistically significant compared with that of nursing group alone(P<0.05).The levels of serum COR and HMGB1 before and after treatment were also significantly decreased between the two groups.CONCLUSION The communication and collaboration of the nursing team have a significant positive impact on respiratory mechanics indicators,blood gas analysis indicators and serum inflammatory factor levels in the treatment of severe pneumonia patients in ICU.展开更多
This paper performs an experimental evaluation of thermolysis-driven gases generated by the thermal decomposition of 1 M LiPF6+EC/DMC=1/1 v/v electrolytes at various decomposition temperatures,pyrolysis durations,and ...This paper performs an experimental evaluation of thermolysis-driven gases generated by the thermal decomposition of 1 M LiPF6+EC/DMC=1/1 v/v electrolytes at various decomposition temperatures,pyrolysis durations,and oxygen concentrations.Carried out in a home-built autoclave filled with pure helium,the experiment reveals that as the decomposition temperature increases,more types and larger quantities of gases will be released.Specifically,the experimental results demonstrate trends of logistic growth in the volume concentration of CO2,C2H6O,C2H4,CO,and C2H4O2 with the increase of decomposition temperature.With a prolonged pyrolysis duration,while volume concentrations of certain gases,such as CO2,C2H6O,C2H5F,and CO would increase,the concentration of C2H4O2 actually decreases.Moreover,concentrations of both C2H4 and C2H5F will first decrease and reach their minimum values at 1%v/v oxygen concentration,and then they would quickly climb back at higher oxygen concentrations,while the concentrations of C2H6 and C2H3F would decrease monotonically.It is envisioned that the detailed experimental results and findings on the gas generation pattern of 1 M LiPF6+EC/DMC=1/1 v/v electrolytes can facilitate the development of an early warning mechanism of thermal runaway based on gas sensing technology,which can be effectively applied to monitor the potential thermal failures of lithium-ion batteries with the same type of electrolyte and thus promote the thermal safety of battery packs in safety-critical applications.展开更多
基金supported by the grants from Innovation Fund for Medical Sciences (CIFMS) from Chinese Academy of Medical Sciences (No.2021-I2M-1-062)National Key R&D Program of China from Ministry of Science and Technology of the People’s Republic of China (No.2022YFC2304601,2021YFC2500801)+1 种基金National High Level Hospital Clinical Research Funding (2022-PUMCH-D-005,2022-PUMCH-D-111,2022-PUMCH-B-126)National key clinical specialty construction projects from National Health Commission。
文摘BACKGROUND:Emergency patients with sepsis or septic shock are at high risk of death.Despite increasing attention to microhemodynamics,the clinical use of advanced microcirculatory assessment is limited due to its shortcomings.Since blood gas analysis is a widely used technique reflecting global oxygen supply and consumption,it may serve as a surrogate for microcirculation monitoring in septic treatment.METHODS:We performed a search using PubMed,Web of Science,and Google scholar.The studies and reviews that were most relevant to septic microcirculatory dysfunctions and blood gas parameters were identified and included.RESULTS:Based on the pathophysiology of oxygen metabolism,the included articles provided a general overview of employing blood gas analysis and its derived set of indicators for microhemodynamic monitoring in septic care.Notwithstanding flaws,several parameters are linked to changes in the microcirculation.A comprehensive interpretation of blood gas parameters can be used in order to achieve hemodynamic optimization in septic patients.CONCLUSION:Blood gas analysis in combination with clinical performance is a reliable alternative for microcirculatory assessments.A deep understanding of oxygen metabolism in septic settings may help emergency physicians to better use blood gas analysis in the evaluation and treatment of sepsis and septic shock.
基金Funded by National College Student Innovation and Entrepreneurship Training Program Project(No.CY202036)。
文摘This study explored the synergistic interaction of sewage sludge(SS)and distillation residue(DR)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric analysis with mass spectrometry(TGA-MS).The results reveal the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/DR.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in ash fractions,while the antagonistic effect is mainly due to the melting of DR on the surface of SS particles during pyrolysis and the reaction of SS ash with alkali metals to form inert substances.SS/DR co-pyrolysis reduces the yielding of coke and gas while increasing tar production.This study will promote the reduction,recycling,and harmless treatment of hazardous solid waste.
基金Funded by National College Student Innovation and Entrepreneurship Training Program Project(No.CY202036)。
文摘This study explored the synergistic interaction of sewage sludge(SS)and automotive paint sludge(PS)during co-pyrolysis for the optimized treatment of sewage sludge in cement kiln systems,utilizing thermogravimetric analysis(TGA)and thermogravimetric-mass spectrometry(TGA-MS).The result reveals the coexisting synergistic and antagonistic effects in the co-pyrolysis of SS/PS.The synergistic effect arises from hydrogen free radicals in SS and catalytic components in PS,while the main source of the antagonistic effect is that,during the mechanical mixing process,the SS/PS is converted from the particulate form into a dough-like rubbery which contributes to the film-forming effect,hindering the volatilization of volatile components.SS/PS co-pyrolysis reduces the yielding of tar production while increasing coke and gas.This study will provide some in-depth insights into the co-pyrolysis of SS/PS,and offer theoretical support for the subsequent research on the collaborative disposal processes in cement kilns.
文摘BACKGROUND Laparoscopic-assisted radical gastrectomy(LARG)is the standard treatment for early-stage gastric carcinoma(GC).However,the negative impact of this proce-dure on respiratory function requires the optimized intraoperative management of patients in terms of ventilation.AIM To investigate the influence of pressure-controlled ventilation volume-guaranteed(PCV-VG)and volume-controlled ventilation(VCV)on blood gas analysis and pulmonary ventilation in patients undergoing LARG for GC based on the lung ultrasound score(LUS).METHODS The study included 103 patients with GC undergoing LARG from May 2020 to May 2023,with 52 cases undergoing PCV-VG(research group)and 51 cases undergoing VCV(control group).LUS were recorded at the time of entering the operating room(T0),20 minutes after anesthesia with endotracheal intubation(T1),30 minutes after artificial pneumoperitoneum(PP)establishment(T2),and 15 minutes after endotracheal tube removal(T5).For blood gas analysis,arterial partial pressure of oxygen(PaO_(2))and partial pressure of carbon dioxide(PaCO_(2))were observed.Peak airway pressure(P_(peak)),plateau pressure(Pplat),mean airway pressure(P_(mean)),and dynamic pulmonary compliance(C_(dyn))were recorded at T1 and T2,1 hour after PP establishment(T3),and at the end of the operation(T4).Postoperative pulmonary complications(PPCs)were recorded.Pre-and postoperative serum interleukin(IL)-1β,IL-6,and tumor necrosis factor-α(TNF-α)were measured by enzyme-linked immunosorbent assay.RESULTS Compared with those at T0,the whole,anterior,lateral,posterior,upper,lower,left,and right lung LUS of the research group were significantly reduced at T1,T2,and T5;in the control group,the LUS of the whole and partial lung regions(posterior,lower,and right lung)decreased significantly at T2,while at T5,the LUS of the whole and some regions(lateral,lower,and left lung)increased significantly.In comparison with the control group,the whole and regional LUS of the research group were reduced at T1,T2,and T5,with an increase in PaO_(2),decrease in PaCO_(2),reduction in P_(peak) at T1 to T4,increase in P_(mean) and C_(dyn),and decrease in Pplat at T4,all significant.The research group showed a significantly lower incidence of PPCs than the control group within 3 days postoperatively.Postoperative IL-1β,IL-6,and TNF-αsignificantly increased in both groups,with even higher levels in the control group.CONCLUSION LUS can indicate intraoperative non-uniformity and postural changes in pulmonary ventilation under PCV-VG and VCV.Under the lung protective ventilation strategy,the PCV-VG mode more significantly improved intraop-erative lung ventilation in patients undergoing LARG for GC and reduced lung injury-related cytokine production,thereby alleviating lung injury.
文摘BACKGROUND The investigation of plant-based therapeutic agents in medicinal plants has revealed their presence in the extracts and provides the vision to formulate novel techniques for drug therapy.Vitex negundo(V.negundo),a perennial herb belonging to the Varbanaceae family,is extensively used in conventional medication.AIM To determine the existence of therapeutic components in leaf and callus extracts from wild V.negundo plants using gas chromatography-mass spectrometry(GCMS).METHODS In this study,we conducted GC-MS on wild plant leaf extracts and correlated the presence of constituents with those in callus extracts.Various growth regulators such as 6-benzylaminopurine(BAP),2,4-dichlorophenoxyacetic acid(2,4-D),α-naphthylacetic acid(NAA),and di-phenylurea(DPU)were added to plant leaves and in-vitro callus and grown on MS medium.RESULTS The results clearly indicated that the addition of BAP(2.0 mg/L),2,4-D(0.2 mg/mL),DPU(2.0 mg/L)and 2,4-D(0.2 mg/mL)in MS medium resulted in rapid callus development.The plant profile of Vitex extracts by GC-MS analysis showed that 24,10,and 14 bioactive constituents were detected in the methanolic extract of leaf,green callus and the methanolic extract of white loose callus,respectively.CONCLUSION Octadecadienoic acid,hexadecanoic acid and methyl ester were the major constituents in the leaf and callus methanolic extract.Octadecadienoic acid was the most common constituent in all samples.The maximum concentration of octadecadienoic acid in leaves,green callus and white loose callus was 21.93%,47.79%and 40.38%,respectively.These findings demonstrate that the concentration of octadecadienoic acid doubles in-vitro compared to in-vivo.In addition to octadecadienoic acid;butyric acid,benzene,1-methoxy-4-(1-propenyl),dospan,tridecanedialdehyde,methylcyclohexenylbutanol,chlorpyrifos,n-secondary terpene diester,anflunine and other important active compounds were also detected.All these components were only available in callus formed in-vitro.This study showed that the callus contained additional botanical characteristics compared with wild plants.Due to the presence of numerous bioactive compounds,the medical use of Vitex for various diseases has been accepted and the plant is considered an important source of therapeutics for research and development.
基金This project is supported by Provincial Natural Science Foundation of Shandong (No.Y2000F07)Scientific Research Foundation for Returned Overseas Chinese Scholars, Education Ministry of China.
文摘Aiming at the change in intake air flow caused by the injection of natural gas in intake manifold if one simply replaces the gasoline injector with natural gas injector with the installing position of injector in intake manifold unchanged, and also the reflection of gas toward intake manifold inlet resulted from the impingement between the injected large volumetric natural gas jet and intake valve, an impulsively started natural gas jet injected from a gas injector is characterized as a three-dimensional unsteady compressible viscous turbulent flow, based on which its transient development process is numerically analyzed using general-purpose CFD codes. The predicted velocity vector maps show a vortex, which indicates the occurrence of an unsteady state jet region, is formed downstream of the jet. A schlieren apparatus is utilized to get several groups of visible schlieren photographs of natural gas jets. In the experiment, photographs of natural gas jets taken by a CCD camera are laid in a portrait processor where the shapes, tip penetration distance and injection angles of the gas jets are investigated. Comparisons between predicted results and measurements indicate an excellent agreement between simulations and experimental results.
基金supported by the National Natural Science Foundation of China (41161019, 41461020)
文摘The increasing intensity and frequency of sand-dust storms in China has led to greater prominence of associated environmentaland health issues. Many studies have focused on the health effects of air particulate contaminants, but fewformal investigations have studied the effects of sand-dust storms on human and animal health. The aim of this study wasto investigate the effects of dust storms on rat lung by using high resolution computed tomography (HRCT) and blood gasanalysis through a wind tunnel simulating. We found that the rat lung damage effects can be detected by the HRCT imagingafter exposure to sand-dust storm environments, but had no obvious result through blood gas analysis. Exposure durationspositively correlated with the damage degree to lung tissue. These will provide some evidence for clinical diagnosis ofnon-occupational pneumoconiosis.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA063006)the National Natural Science Foundation of China (Grant No. 40805015)the Excellent Youth Scientific Foundation of Anhui Province, China (Grant No. 10040606Y28)
文摘In this paper, we present simultaneous multiple pollutant gases (CO2, CO, and NO) measurements by using the non-dispersive infrared (NDIR) technique. A cross-correlation correction method is proposed and used to correct the cross-interferences among the target gases. The calculation of calibration curves is based on least-square fittings with third-order polynomials, and the interference functions are approximated by linear curves. The pure absorbance of each gas is obtained by solving three simultaneous equations using the fitted interference functions. Through the interference correction, the signal created at each filter channel only depends on the absorption of the intended gas. Gas mixture samples with different concentrations of CO2, CO, and NO are pumped into the sample cell for analysis. The results show that the measurement error of each gas is less than 4.5%.
基金BASF SE(Germany)for their fundingfunding from the German Federal Ministry of Education and Research(BMBF)within the projects ExZellTUMⅡ(grant number 03XP0081)and ExZellTUMⅢ(grant number 03XP0255)and of BMW AG。
文摘Interfacial reactions in lithium-ion batteries often involve gaseous reaction products.Mechanistic investigation of material degradation processes requires a technique to identify and quantify these gases in battery cells.Online electrochemical mass spectrometry(OEMS)is an operando gas analysis method that continuously samples the headspace of a custom battery cell.Real-time gas analysis by quantitative OEMS was used to create mechanistic understanding of battery degradation reactions,some of which will be highlight in this article.
基金provided by the Natural Science Foundation Project(Key)of Chongqing(No.cstc2013jjB0012)the National Natural Science Foundation of China(No.51434003)the National Natural Science Foundation of China(No.51474040)
文摘Estimating the intensity of outbursts of coal and gas is important as the intensity and frequency of outbursts of coal and gas tend to increase in deep mining. Fully understanding the major factors contributing to coal and gas outbursts is significant in the evaluation of the intensity of the outburst. In this paper, we discuss the correlation between these major factors and the intensity of the outburst using Analysis of Variance(ANOVA) and Contingency Table Analysis(CTA). Regression analysis is used to evaluate the impact of these major factors on the intensity of outbursts based on physical experiments. Based on the evaluation, two simple models in terms of multiple linear and nonlinear regression were constructed for the prediction of the intensity of the outburst. The results show that the gas pressure and initial moisture in the coal mass could be the most significant factors compared to the weakest factor-porosity. The P values from Fisher's exact test in CTA are: moisture(0.019), geostress(0.290), porosity(0.650), and gas pressure(0.031). P values from ANOVA are moisture(0.094), geostress(0.077), porosity(0.420), and gas pressure(0.051). Furthermore, the multiple nonlinear regression model(RMSE: 3.870) is more accurate than the linear regression model(RMSE: 4.091).
文摘Objective:To systematic evaluation by the dorsalis pedis artery puncture for bed patients blood gas analysis of application effect of impact.Methods:A randomized controlled trial of the effect of arterial blood extraction on blood gas analysis in PubMed,CNKI,Wanfang database and VIP database.After selecting the literature,extracting the data and evaluating the quality of the literature.Meta- analysis was carried out by RevMan 5.3 software.Results:Twelve randomized controlled trials were included and 1696 patients were enrolled.After meta-analysis,the arterial puncture can effectively improve the success of arterial puncture in patients with bed [Z = 5.78,95%CI(1.90,3.66),P<0.001],reduce the occurrence of hematoma [Z = 4.27,95%CI(0.19,0.54),P<0.001],reduce the mistaken into the vein [Z = 4.60,95%CI(0.08,0.36),P<0.001],reduce cyanosis [Z = 2.84,95%CI(0.23,0.81),P<0.008],the difference was statistically significant.Conclusion:Dorsalis pedis artery puncture can improve the success rate of blood gas analysis in bedridden patients,reduce the incidence of hematoma and the incidence of venous leakage,and can be widely used in clinical practice.
文摘An array composed of sixteen gas sensors was constructed to analyze gas mixtures quantitatively. The data of responses from the sensor array to ethane, propane and propylene were treated by three-layer ANN with BP algorithms and PLS. The analytical results indicated that the concentration predicted with ANN is better than that with PLS. The average prediction errors for ethane, propane and propylene were 5.11%, 8.28%, 2.64%, respectively.
文摘A new GC/MS method for detection and identification of 19 anabolic steroids in human urine is presented.The procedure involves adsorption and isolation on a macroporous XAD-2 resin,enzymatic hydrolysis,alkaline extraction,derivatization,GC separation and MS detec- tion.Gas chromatographic-mass spectrometric data illustrate artifacts arising from enzymatic hydrolysis of steroid glucuronides and the structural characterization of their metabolites. Using this method,metabolic studies of these steroids in human urine were made after their ingestion by normal and healthy male volunteers.This method was proven to be suitable for large-scale routine analysis of anabolic steroids and was used successfully in passing the doping control test held by the Medical Commission of the International Olympic Committee.
文摘The cellular fatty acids from a total of 62 strains of Torulopsis glabrata (T. glabrata), Saccharomyces cerevisiae (S. cerevisiae), Rhodotorula rubra (R. rubra), Candida krusei (C. krusei), Candida albicans (C. albicans) and Candida tropicalis (C. tropicalis) were examined by capillary gas chromatography. On the basis of fatty acid composition, all strains could be differentiated as to species. These results indicate that capillary gas chromatographic analysis of cellular fatty acids is likely to be useful for rapid identification or grouping of newer isolates of yeast species.
文摘Sulfur dioxide has been found to decrease the chemiluminescence of luminol-iodine system.A new determination method for sulfur dioxide in atmosphere is developed by applying this reaction to a flow injection gas diffusion separation system.This permits the determination of sulfur dioxide selectively and rapidly.
文摘Dissolved gas analysis is the most widely used diagnostic test in power transformers. The aim of this paper is to introduce the dissolved gas analysis (DGA) methods able to diagnose the transformer conditions. The faults cause the transformer oil, pressboard, and other insulating materials to decompose and generate gases, some of which dissolve in the oil. The results of DGA must be accurate if faults are to be diagnosed reliably. There are different established methods used in industry for interpreting DGA results. We will compare the result of IEEE Key Gas Methods and Rogers’ Ratios. The transformer conditions are evaluated by the Key Gas Method with total combustible gas method (TCGM) and then verified by the Rogers’ Ratios. As result, the aging pattern and trend of the power transformer deterioration can be determined. The 30 sample data from IEEE with known faults and dissolved gas concentrations were used as the basis of comparison.
文摘BACKGROUND Severe pneumonia is a common severe respiratory infection worldwide,and its treatment is challenging,especially for patients in the intensive care unit(ICU).AIM To explore the effect of communication and collaboration between nursing teams on the treatment outcomes of patients with severe pneumonia in ICU.METHODS We retrospectively analyzed 60 patients with severe pneumonia who were treated at the ICU of the hospital between January 1,2021 and December 31,2023.We compared and analyzed the respiratory mechanical indexes[airway resistance(Raw),mean airway pressure(mPaw),peak pressure(PIP)],blood gas analysis indexes(arterial oxygen saturation,arterial oxygen partial pressure,and oxygenation index),and serum inflammatory factor levels[C-reactive protein(CRP),procalcitonin(PCT),cortisol(COR),and high mobility group protein B1(HMGB1)]of all patients before and after treatment.RESULTS Before treatment,there was no significant difference in respiratory mechanics index and blood gas analysis index between 2 groups(P>0.05).However,after treatment,the respiratory mechanical indexes of patients in both groups were significantly improved,and the improvement of Raw,mPaw,plateau pressure,PIP and other indexes in the combined group after communication and collaboration with the nursing team was significantly better than that in the single care group(P<0.05).The serum CRP and PCT levels of patients were significantly decreased,and the difference was statistically significant compared with that of nursing group alone(P<0.05).The levels of serum COR and HMGB1 before and after treatment were also significantly decreased between the two groups.CONCLUSION The communication and collaboration of the nursing team have a significant positive impact on respiratory mechanics indicators,blood gas analysis indicators and serum inflammatory factor levels in the treatment of severe pneumonia patients in ICU.
基金supported by the National Natural Science Foundation of China(51877203)the Science and Technology Foundation of State Grid Corporation of China(521205190014).
文摘This paper performs an experimental evaluation of thermolysis-driven gases generated by the thermal decomposition of 1 M LiPF6+EC/DMC=1/1 v/v electrolytes at various decomposition temperatures,pyrolysis durations,and oxygen concentrations.Carried out in a home-built autoclave filled with pure helium,the experiment reveals that as the decomposition temperature increases,more types and larger quantities of gases will be released.Specifically,the experimental results demonstrate trends of logistic growth in the volume concentration of CO2,C2H6O,C2H4,CO,and C2H4O2 with the increase of decomposition temperature.With a prolonged pyrolysis duration,while volume concentrations of certain gases,such as CO2,C2H6O,C2H5F,and CO would increase,the concentration of C2H4O2 actually decreases.Moreover,concentrations of both C2H4 and C2H5F will first decrease and reach their minimum values at 1%v/v oxygen concentration,and then they would quickly climb back at higher oxygen concentrations,while the concentrations of C2H6 and C2H3F would decrease monotonically.It is envisioned that the detailed experimental results and findings on the gas generation pattern of 1 M LiPF6+EC/DMC=1/1 v/v electrolytes can facilitate the development of an early warning mechanism of thermal runaway based on gas sensing technology,which can be effectively applied to monitor the potential thermal failures of lithium-ion batteries with the same type of electrolyte and thus promote the thermal safety of battery packs in safety-critical applications.