Research on dual-fuel(DF)engines has become increasingly important as engine manufacturers seek to reduce carbon dioxide emissions.There are significant advantages of using diesel pilot-ignited natural gas engines as ...Research on dual-fuel(DF)engines has become increasingly important as engine manufacturers seek to reduce carbon dioxide emissions.There are significant advantages of using diesel pilot-ignited natural gas engines as DF engines.However,different combustion modes exist due to variations in the formation of the mixture.This research used a simulation model and numerical simulations to explore the combustion characteristics of high-pressure direct injection(HPDI),partially premixed compression ignition(PPCI),and double pilot injection premixed compression ignition(DPPCI)combustion modes under a low-medium load.The results revealed that the DPPCI combustion mode provides higher gross indicated thermal efficiency and more acceptable total hydrocarbon(THC)emission levels than the other modes.Due to its relatively good performance,an experimental study was conducted on the DPPCI mode engine to evaluate the impact of the diesel dual-injection strategy on the combustion process.In the DPPCI mode,a delay in the second pilot ignition injection time increased THC emissions(a maximum value of 4.27g/(kW·h)),decreased the emission of nitrogen oxides(a maximum value of 7.64 g/(kW·h)),increased and then subsequently decreased the gross indicated thermal efficiency values,which reached 50.4%under low-medium loads.展开更多
We propose a novel concept for power generation that involves the combination of a LSCHG (low-steam-condition heat generator), such as a light water nuclear reactor or a biomass combustion boiler, with an advanced c...We propose a novel concept for power generation that involves the combination of a LSCHG (low-steam-condition heat generator), such as a light water nuclear reactor or a biomass combustion boiler, with an advanced closed-cycle oxy-fuel combustion gas turbine-a type of complex and efficient oxy-fuel gas turbine. In this study, a LSCHG is designed to heat water to saturated steam of a few MPa, to assist in the generation of the main working fluids, instead of a compressor used in the advanced oxy-fuel gas turbine. This saturated steam can have a lower pressure and temperature than those of an existing nuclear power plant or biomass-fired power plant. We estimated plant performances in LHV (lower heating value) basis from a heat balance model based on a conceptual design of a plant for different gas turbine inlet pressures and temperatures of 1,300 ℃ and 1,500 ℃, taking into account the work to produce O2 and capture CO2. While the net power generating efficiencies of a reference plant are estimated to be about 52.0% and 56.0% at 1,300 ℃ and 1,500 ℃, respectively, and conventional LSCHG power plant is assumed to have an efficiency of about 35% or less for pressures of 2.5-6.5 MPa, the proposed hybrid plant achieved 42.8%-44.7% at 1,300 ℃ and 47.8%-49.2% at 1,500 ℃. In the proposed plant, even supposing that the generating efficiency of the LNG system in the proposed plant remains equal to that of the reference plant, the efficiency of LSCHG system can be estimated 37.4% for 6.5 MPa and 33.2% for 2.5 MPa, even though the LSHCG system may be regarded as consisting of fewer plant facilities than a conventional LSCHG power plant.展开更多
Thermochemical recuperation heat recovery is an advanced waste heat utilization technology that can effectively recover exhaust waste heat from oxy-fuel Stirling engines.The novel combustor of a Stirling engine with t...Thermochemical recuperation heat recovery is an advanced waste heat utilization technology that can effectively recover exhaust waste heat from oxy-fuel Stirling engines.The novel combustor of a Stirling engine with thermochemical recuperation heat recovery system is expected to utilize both reformed gas and diesel fuels as sources of combustion.In this research,the effects of various factors,including the H_(2)O addition,fuel distribution ratio(FDR),excess oxygen coefficient,and cyclone structure on the temperature distribution in the combustor,combustion emissions,and external combustion system efficiency of the Stirling engine were experimentally investigated.With the increase of steam-to-carbon ratio(S/C),the temperature difference between the upper and lower heating tubes reduces and the circumferential temperature fluctuation decreases,and the combustion of diesel and reformed gas remains close to complete combustion.At S/C=2,the external combustion efficiency is 80.6%,indicating a 1.6%decrease compared to conventional combustion.With the increase of FDR,the temperature uniformity of the heater tube is improved,and the CO and HC emissions decrease.However,the impact of the FDR on the maximum temperature difference and temperature fluctuation across the heater is insignificant.When the FDR rises from 21%to 38%,the external combustion efficiency increases from 87.4%to92.3%.The excess oxygen coefficient plays a secondary role in influencing temperature uniformity and temperature difference,and the reformed gas and diesel fuel can be burned efficiently at a low excess oxygen coefficient of 1.04.With an increase in the cyclone angle,the heater tube temperature increases,while the maximum temperature difference at the lower part decreases,and the temperature fluctuation increases.Simultaneously,the CO and HC emissions increase,and the external combustion efficiency experiences a decrease.A cyclone angle of 30°is found to be an appropriate value for achieving optimal mixing between reformed gas and diesel fuel.The research findings present valuable new insights that can be utilized to enhance the performance optimization of Stirling engines.展开更多
Jet ignition is an efficient way to achieve lean burn of the engine and a promising strategy to meet the stringent emission regulations in the future.This paper presents a distributed gas ignition(DGI)combustion conce...Jet ignition is an efficient way to achieve lean burn of the engine and a promising strategy to meet the stringent emission regulations in the future.This paper presents a distributed gas ignition(DGI)combustion concept and realizes a DGI combustion mode using a newly designed DGI igniter.The igniter integrates a fuel injector and a spark plug to achieve minimum volume and easy installation.As the mixture preparation within the jet chamber is essential for the performance of the igniter,different jet chamber injection strategies were tested with varying excess air-fuel ratio ranging from 1.4 to 2.0.By addressing the dual injection strategy,the ignition delay and combustion duration were improved evidently.Compared with the single injection strategy,dual injection strategy improves the flexibility when preparing the mixture inside the jet chamber and therefore retains more fuel.The increased energy density of the jet chamber helps to generate more energetic jets under dual injection strategy,resulting in the improvement of ignition and combustion performance with lean burn.A higher thermal efficiency and a leaner limit of the engine are attained with dual injection than that with single injection.Dual injection exhibits its potential in reducing CO and THC emissions to an acceptable level with leaner mixture.Based on dual injection strategy,the maximum indicated thermal efficiency of 45%is achieved.展开更多
To test the effectiveness of N_(2) and CO_(2) in preventing coal from spontaneously combusting,researchers used an adiabatic oxidation apparatus to conduct an experiment with different temperature starting points.Non-...To test the effectiveness of N_(2) and CO_(2) in preventing coal from spontaneously combusting,researchers used an adiabatic oxidation apparatus to conduct an experiment with different temperature starting points.Non-adsorbed helium(He)was used as a reference gas,and coal and oxygen concentration temperature variations were analyzed after inerting.The results showed that He had the best cooling effect,N_(2) was second,and CO_(2) was the worst.At 70℃and 110℃,the impact of different gases on reducing oxygen concentration and the cooling effect was the same.However,at the starting temperature of 150℃,CO_(2) was less effective in lowering oxygen concentration at the later stage than He and N_(2).N_(2) and CO_(2) can prolong the flame retardation time of inert gas and reduce oxygen displacement with an initial temperature increase.When the starting temperature is the same,N_(2) injection cools coal samples and replaces oxygen more effectively than CO_(2) injection.The flame retardancy of inert gas is the combined result of the cooling effect of inert gas and the replacement of oxygen.These findings are essential for using inert flame retardant technology in the goaf.展开更多
基金Project(2017YFE0102800)supported by the National Key R&D Program of ChinaProject(19JCYBJC21200)supported by the Tianjin Natural Science Foundation,China。
文摘Research on dual-fuel(DF)engines has become increasingly important as engine manufacturers seek to reduce carbon dioxide emissions.There are significant advantages of using diesel pilot-ignited natural gas engines as DF engines.However,different combustion modes exist due to variations in the formation of the mixture.This research used a simulation model and numerical simulations to explore the combustion characteristics of high-pressure direct injection(HPDI),partially premixed compression ignition(PPCI),and double pilot injection premixed compression ignition(DPPCI)combustion modes under a low-medium load.The results revealed that the DPPCI combustion mode provides higher gross indicated thermal efficiency and more acceptable total hydrocarbon(THC)emission levels than the other modes.Due to its relatively good performance,an experimental study was conducted on the DPPCI mode engine to evaluate the impact of the diesel dual-injection strategy on the combustion process.In the DPPCI mode,a delay in the second pilot ignition injection time increased THC emissions(a maximum value of 4.27g/(kW·h)),decreased the emission of nitrogen oxides(a maximum value of 7.64 g/(kW·h)),increased and then subsequently decreased the gross indicated thermal efficiency values,which reached 50.4%under low-medium loads.
文摘We propose a novel concept for power generation that involves the combination of a LSCHG (low-steam-condition heat generator), such as a light water nuclear reactor or a biomass combustion boiler, with an advanced closed-cycle oxy-fuel combustion gas turbine-a type of complex and efficient oxy-fuel gas turbine. In this study, a LSCHG is designed to heat water to saturated steam of a few MPa, to assist in the generation of the main working fluids, instead of a compressor used in the advanced oxy-fuel gas turbine. This saturated steam can have a lower pressure and temperature than those of an existing nuclear power plant or biomass-fired power plant. We estimated plant performances in LHV (lower heating value) basis from a heat balance model based on a conceptual design of a plant for different gas turbine inlet pressures and temperatures of 1,300 ℃ and 1,500 ℃, taking into account the work to produce O2 and capture CO2. While the net power generating efficiencies of a reference plant are estimated to be about 52.0% and 56.0% at 1,300 ℃ and 1,500 ℃, respectively, and conventional LSCHG power plant is assumed to have an efficiency of about 35% or less for pressures of 2.5-6.5 MPa, the proposed hybrid plant achieved 42.8%-44.7% at 1,300 ℃ and 47.8%-49.2% at 1,500 ℃. In the proposed plant, even supposing that the generating efficiency of the LNG system in the proposed plant remains equal to that of the reference plant, the efficiency of LSCHG system can be estimated 37.4% for 6.5 MPa and 33.2% for 2.5 MPa, even though the LSHCG system may be regarded as consisting of fewer plant facilities than a conventional LSCHG power plant.
基金supported by the Ministry of Science and Technology of China(Grant No.2022YFE0209000)the Shanghai Rising-Star Program(Grant No.21QB1403900)Shanghai Municipal Commission of Science and Technology(Grant No.22170712600)。
文摘Thermochemical recuperation heat recovery is an advanced waste heat utilization technology that can effectively recover exhaust waste heat from oxy-fuel Stirling engines.The novel combustor of a Stirling engine with thermochemical recuperation heat recovery system is expected to utilize both reformed gas and diesel fuels as sources of combustion.In this research,the effects of various factors,including the H_(2)O addition,fuel distribution ratio(FDR),excess oxygen coefficient,and cyclone structure on the temperature distribution in the combustor,combustion emissions,and external combustion system efficiency of the Stirling engine were experimentally investigated.With the increase of steam-to-carbon ratio(S/C),the temperature difference between the upper and lower heating tubes reduces and the circumferential temperature fluctuation decreases,and the combustion of diesel and reformed gas remains close to complete combustion.At S/C=2,the external combustion efficiency is 80.6%,indicating a 1.6%decrease compared to conventional combustion.With the increase of FDR,the temperature uniformity of the heater tube is improved,and the CO and HC emissions decrease.However,the impact of the FDR on the maximum temperature difference and temperature fluctuation across the heater is insignificant.When the FDR rises from 21%to 38%,the external combustion efficiency increases from 87.4%to92.3%.The excess oxygen coefficient plays a secondary role in influencing temperature uniformity and temperature difference,and the reformed gas and diesel fuel can be burned efficiently at a low excess oxygen coefficient of 1.04.With an increase in the cyclone angle,the heater tube temperature increases,while the maximum temperature difference at the lower part decreases,and the temperature fluctuation increases.Simultaneously,the CO and HC emissions increase,and the external combustion efficiency experiences a decrease.A cyclone angle of 30°is found to be an appropriate value for achieving optimal mixing between reformed gas and diesel fuel.The research findings present valuable new insights that can be utilized to enhance the performance optimization of Stirling engines.
基金This work is supported by NSFC.91541206The assistance of Professor Guang Hong of the University of Technology Sydney with improving language is gratefully acknowledged.
文摘Jet ignition is an efficient way to achieve lean burn of the engine and a promising strategy to meet the stringent emission regulations in the future.This paper presents a distributed gas ignition(DGI)combustion concept and realizes a DGI combustion mode using a newly designed DGI igniter.The igniter integrates a fuel injector and a spark plug to achieve minimum volume and easy installation.As the mixture preparation within the jet chamber is essential for the performance of the igniter,different jet chamber injection strategies were tested with varying excess air-fuel ratio ranging from 1.4 to 2.0.By addressing the dual injection strategy,the ignition delay and combustion duration were improved evidently.Compared with the single injection strategy,dual injection strategy improves the flexibility when preparing the mixture inside the jet chamber and therefore retains more fuel.The increased energy density of the jet chamber helps to generate more energetic jets under dual injection strategy,resulting in the improvement of ignition and combustion performance with lean burn.A higher thermal efficiency and a leaner limit of the engine are attained with dual injection than that with single injection.Dual injection exhibits its potential in reducing CO and THC emissions to an acceptable level with leaner mixture.Based on dual injection strategy,the maximum indicated thermal efficiency of 45%is achieved.
基金support was received from the National Natural Science Foundation of China(52074156).
文摘To test the effectiveness of N_(2) and CO_(2) in preventing coal from spontaneously combusting,researchers used an adiabatic oxidation apparatus to conduct an experiment with different temperature starting points.Non-adsorbed helium(He)was used as a reference gas,and coal and oxygen concentration temperature variations were analyzed after inerting.The results showed that He had the best cooling effect,N_(2) was second,and CO_(2) was the worst.At 70℃and 110℃,the impact of different gases on reducing oxygen concentration and the cooling effect was the same.However,at the starting temperature of 150℃,CO_(2) was less effective in lowering oxygen concentration at the later stage than He and N_(2).N_(2) and CO_(2) can prolong the flame retardation time of inert gas and reduce oxygen displacement with an initial temperature increase.When the starting temperature is the same,N_(2) injection cools coal samples and replaces oxygen more effectively than CO_(2) injection.The flame retardancy of inert gas is the combined result of the cooling effect of inert gas and the replacement of oxygen.These findings are essential for using inert flame retardant technology in the goaf.