Maintenance scheduling and asset management practices play an important role in power systems,specifically in power generating plants.This paper presents a novel riskbased framework for a criticality assessment of pla...Maintenance scheduling and asset management practices play an important role in power systems,specifically in power generating plants.This paper presents a novel riskbased framework for a criticality assessment of plant components as a means to conduct more focused maintenance activities.Critical components in power plants that influence overall system performance are identified by quantifying their failure impact on system reliability,electric safety,cost,and the environment.Prioritization of plant components according to the proposed risk-based method ensures that the most effective and techno-economic investment decisions are implemented.This,in turn,helps to initiate modern maintenance approaches,such as reliability-centered maintenance(RCM).The proposed method is applied to a real combined cycle power plant(CCPP)in Iran,composed of two gas turbine power plants(GTPP)and one steam turbine power plant(STPP).The results demonstrate the practicality and applicability of the presented approach in real world practices.展开更多
A 320 MW old steam power plant has been chosen for repowering in this paper. Considering the technical conditions and working life of the power plant, the full repowering method has been selected from different repowe...A 320 MW old steam power plant has been chosen for repowering in this paper. Considering the technical conditions and working life of the power plant, the full repowering method has been selected from different repowering methods. The power plant repower- ing has been analyzed for three different feed water flow rates: a flow rate equal to the flow rate at the condenser exit in the original plant when it works at nominal load, a flow rate at maximum load, and a flow rate when all the extractions are blocked. For each flow rates, two types of gas turbines have been examined: V94.2 and V94.3A. The effect of a duct burner has then been investigated in each of the above six cases. Steam is produced by a double- pressure heat recovery steam generator (HRSG) with reheat which obtains its required heat from the exhaust gases coming from the gas turbines. The results obtained from modeling and analyzing the energy-exergy of the original steam power plant and the repowered power plant indicate that the maximum efficiency of the repowered power plant is 52.04%. This maximum efficiency occurs when utilizing two V94.3A gas turbines without duct burner in the steam flow rate of the nominal load.展开更多
文摘Maintenance scheduling and asset management practices play an important role in power systems,specifically in power generating plants.This paper presents a novel riskbased framework for a criticality assessment of plant components as a means to conduct more focused maintenance activities.Critical components in power plants that influence overall system performance are identified by quantifying their failure impact on system reliability,electric safety,cost,and the environment.Prioritization of plant components according to the proposed risk-based method ensures that the most effective and techno-economic investment decisions are implemented.This,in turn,helps to initiate modern maintenance approaches,such as reliability-centered maintenance(RCM).The proposed method is applied to a real combined cycle power plant(CCPP)in Iran,composed of two gas turbine power plants(GTPP)and one steam turbine power plant(STPP).The results demonstrate the practicality and applicability of the presented approach in real world practices.
文摘A 320 MW old steam power plant has been chosen for repowering in this paper. Considering the technical conditions and working life of the power plant, the full repowering method has been selected from different repowering methods. The power plant repower- ing has been analyzed for three different feed water flow rates: a flow rate equal to the flow rate at the condenser exit in the original plant when it works at nominal load, a flow rate at maximum load, and a flow rate when all the extractions are blocked. For each flow rates, two types of gas turbines have been examined: V94.2 and V94.3A. The effect of a duct burner has then been investigated in each of the above six cases. Steam is produced by a double- pressure heat recovery steam generator (HRSG) with reheat which obtains its required heat from the exhaust gases coming from the gas turbines. The results obtained from modeling and analyzing the energy-exergy of the original steam power plant and the repowered power plant indicate that the maximum efficiency of the repowered power plant is 52.04%. This maximum efficiency occurs when utilizing two V94.3A gas turbines without duct burner in the steam flow rate of the nominal load.