Based on the theory of optical scintillation induced by fluctuation of particulate concentration, a Gas Flow Velocity Measurement System (GFVMS) is proposed to measure the gas flow velocity in stack. Verification expe...Based on the theory of optical scintillation induced by fluctuation of particulate concentration, a Gas Flow Velocity Measurement System (GFVMS) is proposed to measure the gas flow velocity in stack. Verification experiments on simulation flue indicate that, for the smoothing effect of transmitting and receiving apertures, optical scintillation induced by refractive index fluctuation is very weak. When particles are added into gas flow, the standard deviation of optical scintillation increased obviously. And when the particulate number concentration exceeds 4000/m3, the GFVMS can work normally, and the variation range of measured velocities is almost the same with that of Pitot tube. Sensitivity testing results show that, GFVMS is very sensitive to velocity change. Results of outfield experiment prove that, velocities measured by GFVMS are more stable and the average velocity (7.62/s) is very close to the statistical average (7.61 m/s) of velocities measured by Pitot tube at different points along optical path.展开更多
To investigate the distribution and velocity attributes of gas hydrates in the northern continental slope of South China Sea, Guangzhou Marine Geological Survey conducted four-component (4C) ocean-bottom seismometer...To investigate the distribution and velocity attributes of gas hydrates in the northern continental slope of South China Sea, Guangzhou Marine Geological Survey conducted four-component (4C) ocean-bottom seismometer (OBS) surveys. A case study is presented to show the results of acquiring and processing OBS data for detecting gas hydrates. Key processing steps such as repositioning, reorientation, PZ summation, and mirror imaging are discussed. Repositioning and reorientation find the correct location and direction of nodes. PZ summation matches P- and Z-components and sums them to separate upgoing and downgoing waves. Upgoing waves are used in conventional imaging, whereas downgoing waves are used in mirror imaging. Mirror imaging uses the energy of the receiver ghost reflection to improve the illumination of shallow structures, where gas hydrates and the associated bottom-simulating reflections (BSRs) are located. We developed a new method of velocity analysis using mirror imaging. The proposed method is based on velocity scanning and iterative prestack time migration. The final imaging results are promising. When combined with the derived velocity field, we can characterize the BSR and shallow structures; hence, we conclude that using 4C OBS can reveal the distribution and velocity attributes of gas hydrates.展开更多
A gas puff imaging(GPI)diagnostic has been developed and operated on EAST since 2012,and the time-delay estimation(TDE)method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI dat...A gas puff imaging(GPI)diagnostic has been developed and operated on EAST since 2012,and the time-delay estimation(TDE)method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI data.However,with the TDE method it is difficult to analyze the data with fast transient events,such as edge-localized mode(ELM).Consequently,a method called the spatial displacement estimation(SDE)algorithm is developed to estimate the turbulence velocity with high temporal resolution.Based on the SDE algorithm,we make some improvements,including an adaptive median filter and super-resolution technology.After the development of the algorithm,a straight-line movement and a curved-line movement are used to test the accuracy of the algorithm,and the calculated speed agrees well with preset speed.This SDE algorithm is applied to the EAST GPI data analysis,and the derived propagation velocity of turbulence is consistent with that from the TDE method,but with much higher temporal resolution.展开更多
Based on the momentum conservation approach, a theoretical model was developed to predict the superficial liquid velocity, and a correlation equation was established to calculate the gas holdup of an annular external-...Based on the momentum conservation approach, a theoretical model was developed to predict the superficial liquid velocity, and a correlation equation was established to calculate the gas holdup of an annular external-loop airlift reactor(AELAR)in the bubble flow and developing slug flow pattern. Experiments were performed by using tap-water and silicone oil with the viscosity of 2.0 mm^2/s(2cs-SiO)and 5.0 mm^2/s(5cs-SiO)as liquid phases. The effects of liquid viscosity and flow pattern on the AELAR performance were investigated. The predictions of the proposed model were in good agreement with the experimental results of the AELAR. In addition, the comparison of the experimental results shows that the proposed model has good accuracy and could be used to predict the gas holdup and liquid velocity of an AELAR operating in bubble and developing flow pattern.展开更多
Due to the scale invariance, the thermodynamic laws of strongly interacting limit unitary Fermi gas can be similar to those of non-interacting ideal gas. For example, the virial theorem between pressure and energy den...Due to the scale invariance, the thermodynamic laws of strongly interacting limit unitary Fermi gas can be similar to those of non-interacting ideal gas. For example, the virial theorem between pressure and energy density of the ideal gas P = 2E/aV is still satisfied by the unitary Fermi gas. This paper analyses the sound velocity of unitary Fermi gases with the quasi-linear approximation. For comparison, the sound velocities for the ideal Boltzmann, Bose and Fermi gas are also given. Quite interestingly, the sound velocity formula for the ideal non-interacting gas is found to be satisfied by the unitary Fermi gas in different temperature regions.展开更多
A gas-kinetic numerical method for directly solving the mesoscopic velocity distribution function equation is presented and applied to the study of three-dimensional complex flows and micro-channel flows covering vari...A gas-kinetic numerical method for directly solving the mesoscopic velocity distribution function equation is presented and applied to the study of three-dimensional complex flows and micro-channel flows covering various flow regimes. The unified velocity distribution function equation describing gas transport phenomena from rarefied transition to continuum flow regimes can be presented on the basis of the kinetic Boltzmann-Shakhov model equation. The gas-kinetic finite-difference schemes for the velocity distribution function are constructed by developing a discrete velocity ordinate method of gas kinetic theory and an unsteady time-splitting technique from computational fluid dynamics. Gas-kinetic boundary conditions and numerical modeling can be established by directly manipulating on the mesoscopic velocity distribution function. A new Gauss-type discrete velocity numerical integra- tion method can be developed and adopted to attack complex flows with different Mach numbers. HPF paral- lel strategy suitable for the gas-kinetic numerical method is investigated and adopted to solve three-dimensional complex problems. High Mach number flows around three-dimensional bodies are computed preliminarilywith massive scale parallel. It is noteworthy and of practical importance that the HPF parallel algorithm for solving three-dimensional complex problems can be effectively developed to cover various flow regimes. On the other hand, the gas-kinetic numerical method is extended and used to study micro-channel gas flows including the classical Couette flow, the Poiseuillechannel flow and pressure-driven gas flows in twodimensional short micro-channels. The numerical experience shows that the gas-kinetic algorithm may be a powerful tool in the numerical simulation of microscale gas flows occuring in the Micro-Electro-Mechanical System (MEMS).展开更多
The purpose of this paper is to study the critical sand starting velocity and transformation law of flow pattern based on gas-water-sand three-phase flow in an inclined pipe.Firstly,the indoor simulation experiment sy...The purpose of this paper is to study the critical sand starting velocity and transformation law of flow pattern based on gas-water-sand three-phase flow in an inclined pipe.Firstly,the indoor simulation experiment system of gas-water-sand three-phase flow was used to test the conversion law of flow pattern based upon the different gas void fraction.Secondly,the influence of slug bubbles on sand migration was investigated according to distinctive hole deviation angles,gas void fraction and sand concentration.Finally,the critical sand starting velocity was tested based on dissimilar hole deviation angles,gas void fraction,sand concentration and sand particle size,and then the influence of the abovementioned key parameters on the sand starting velocity was debated based on the force analysis of the sand particles.The experimental results illustrated that when the gas void fraction was less than 5%,it was bubbly flow.When it increased from 5%to 30%,the bubbly flow and slug flow coexisted.When it was between 30%and 50%,the slug flow and agitated flow coexisted.When it reached 50%,it was agitated flow.Providing that the hole deviation angle was 90°,the phenomenon of overall migration and wavelike migration on the surface of sand bed was observed.On the contrary,the phenomenon of rolling and jumping migration was recognized.The critical sand starting velocity was positively correlated with the hole deviation angle and sand particle size,but negatively associated with the gas void fraction and sand concentration.This research can provide a certain reference for sand-starting production in the field of petroleum engineering.展开更多
In coal industry,gas explosion accidents emerge constantly,causing enormous casualties and poorer material property.In the course of studying gas exploding mechanism,the propagation velocity of the flame wave front is...In coal industry,gas explosion accidents emerge constantly,causing enormous casualties and poorer material property.In the course of studying gas exploding mechanism,the propagation velocity of the flame wave front is one of the most important factors.A set of flame velocity measuring system was designed according to the horizontal pipelined experimental facility of North University of China to study the effects of the quantity and blockage ratio of the circle ring obstacle on the flame propagation velocity in the inclosed tube.The research results show that the obstacle has obviously accelerating effect on the flame wave of gas explosion With the increase of quantity and blockage ratio of the obstacle,the flame accelerating effect becomes more obvious and the flame accelerating persistence is intenser,of which the effect of the quantity of the obstacle on the flame accelerating persistence is larger,but the effect of the blockage ratio of the obstacle on the flame accelerating persistenceis not obvious.展开更多
Horizontal gas-liquid two-phase flows widely exist in chemical engineering,oil/gas production and other important industrial processes.Slug flow pattern is the main form of horizontal gas-liquid flows and characterize...Horizontal gas-liquid two-phase flows widely exist in chemical engineering,oil/gas production and other important industrial processes.Slug flow pattern is the main form of horizontal gas-liquid flows and characterized by intermittent motion of film region and slug region.This work aims to develop the ultrasonic Doppler method to realize the simultaneous measurement of the velocity profile and liquid film thickness of slug flow.A single-frequency single-channel transducer is adopted in the design of the field-programmable gate array based ultrasonic Doppler system.A multiple echo repetition technology is used to improve the temporal-spatial resolution for the velocity profile.An experiment of horizontal gas-liquid two-phase flow is implemented in an acrylic pipe with an inner diameter of 20 mm.Considering the aerated characteristics of the liquid slug,slug flow is divided into low-aerated slug flow,high-aerated slug flow and pseudo slug flow.The temporal-spatial velocity distributions of the three kinds of slug flows are reconstructed by using the ultrasonic velocity profile measurement.The evolution characteristics of the average velocity profile in slug flows are investigated.A novel method is proposed to derive the liquid film thickness based on the instantaneous velocity profile.The liquid film thickness can be effectively measured by detecting the position and the size of the bubbles nearly below the elongated gas bubble.Compared with the time of flight method,the film thickness measured by the Doppler system shows a higher accuracy as a bubble layer occurs in the film region.The effect of the gas distribution on the film thickness is uncovered in three kinds of slug flows.展开更多
In this study, the effects of the impact velocity on the particle deposition characteristics in cold gas dynamic spraying (CGDS) of 304 stainless steel (SS) on an interstitial free (IF) steel substrate are numer...In this study, the effects of the impact velocity on the particle deposition characteristics in cold gas dynamic spraying (CGDS) of 304 stainless steel (SS) on an interstitial free (IF) steel substrate are numerical simulated by means of a finite element analysis (FEA). The results have illustrated that when the particle impact velocity exceeds a critical value at which adiabatic shear instability of the particle starts to occur. Meanwhile, the fatten ratio and impact crater depth (or the effective contacting area ) increase rapidly. The particle-substrate bonding and deposition mechanism can be attributed to such an adiabatic shear deformation induced by both the compressive force and the slide friction force of particle. The critical velocity can be predicted by numerical simulation, which is useful to optimize the CGDS processing parameters for various materials.展开更多
Elastic velocities(v_p and v_s)have been widely used in estimating gas hydrate saturation in void spaces of sediments.The commonly used models are empirical equations or some physically based models,such as Wyllie’s ...Elastic velocities(v_p and v_s)have been widely used in estimating gas hydrate saturation in void spaces of sediments.The commonly used models are empirical equations or some physically based models,such as Wyllie’s time average,Effective Medium Theory (EMT),Modified Biot-Gassmann Theory by Lee (BGTL),etc.These equations or models are selective to distinct conditions.In order to evaluate the app-展开更多
The transport of ablated particles produced by single pulsed-laser ablation is simulated via Monte Carlo method. The pressure ranges of velocity splitting of ablated particles in different inert gases are investigated...The transport of ablated particles produced by single pulsed-laser ablation is simulated via Monte Carlo method. The pressure ranges of velocity splitting of ablated particles in different inert gases are investigated. The result shows that the range of velocity splitting decreases with the atomic mass of the ambient gas increasing. The ambient gas whose atomic mass is more than that of Kr cannot induce the velocity splitting of ablated particles. The results are explained by the underdamping model and the inertia flow model.展开更多
In the DF1-1 Gas Field in the Yinggehai Basin, South China Sea, the velocity-depth plot and velocity spectra show significant variations from a linear trend, exhibiting a distinct reversal phenomenon. Velocity paramet...In the DF1-1 Gas Field in the Yinggehai Basin, South China Sea, the velocity-depth plot and velocity spectra show significant variations from a linear trend, exhibiting a distinct reversal phenomenon. Velocity parameters derived from velocity spectral analysis of the seismic data and sonic logs indicate that the interval velocity reverses below 2,100 m (2.2 s two-way time (TWT)) in the DF1-1 Gas Field. Some direct hydrocarbon indicators (DHIs) models developed for the shallow strata cannot be simply applied to the moderately to deeply buried strata for direct exploration target recognition because the velocity reversal has caused the middle-deep gas reservoirs to exhibit a moderate or weak seismic amplitude. The hydrocarbon indicator method of “Differential Interformational Velocity Analysis (DIVA)” with the aid of other hydrocarbon indicating techniques was employed to effectively identify DHIs in the middle-deep strata under velocity inversion. The result has shown that the DIVA technique can be effectively used as a DHI in both the shallow and the middle-deep strata in the study area with the shallow strata characterized by Type I DIVA anomaly and the middle-deep strata characterized by the Type II DIVA anomaly.展开更多
Recently, velocity prediction and modeling have been focus of the geophysical exploration in the high temperature and high pressure of the south China sea area, especially for new offshore exploratory areas. The error...Recently, velocity prediction and modeling have been focus of the geophysical exploration in the high temperature and high pressure of the south China sea area, especially for new offshore exploratory areas. The error is large with great difficulty owing to fewer exploratory wells and misunderstanding. Firstly, on the basis of three typical velocity prediction and modeling examples in Ying-Qiong basin, it’s easy to put forward the corresponding not common but urgent problem in each instance, then combined with the velocity problem and misunderstanding to expand method discussion and solution, which include geological model to guide the velocity interpretation and analysis, the establishment of forward velocity of the auxiliary model explaining and constructing high precision velocity model. This research basically solves existing velocity problems in gas exploration of south China sea in recent years, and proposes corresponding solution and application, which is of great significance to the further exploration and productive practice.展开更多
Based on the assumption of gas-liquid stratified flow pattern in inclined gas wells,considering the influence of wettability and surface tension on the circumferential distribution of liquid film along the wellbore wa...Based on the assumption of gas-liquid stratified flow pattern in inclined gas wells,considering the influence of wettability and surface tension on the circumferential distribution of liquid film along the wellbore wall,the influence of the change of the gas-liquid interface configuration on the potential energy,kinetic energy and surface free energy of the two-phase system per unit length of the tube is investigated,and a new model for calculating the gas-liquid distribution at critical conditions is developed by using the principle of minimum energy.Considering the influence of the inclination angle,the calculation model of interfacial friction factor is established,and finally closed the governing equations.The interface shape is more vulnerable to wettability and surface tension at a low liquid holdup,resulting in a curved interface configuration.The interface is more curved when the smaller is the pipe diameter,or the smaller the liquid holdup,or the smaller the deviation angle,or the greater gas velocity,or the greater the gas density.The critical liquid-carrying velocity increases nonlinearly and then decreases with the increase of inclination angle.The inclination corresponding to the maximum critical liquid-carrying velocity increases with the increase of the diameter of the wellbore,and it is also affected by the fluid properties of the gas phase and liquid phase.The mean relative errors for critical liquid-carrying velocity and critical pressure gradient are 1.19%and 3.02%,respectively,and the misclassification rate is 2.38%in the field trial,implying the new model can provide a valid judgement on the liquid loading in inclined gas wells.展开更多
Gas hydrates gained a remarkable attention as an unconventional energy resource recently. In order to interpret gas hydrates (part of fluid) and free gas saturated zone accurately, it is essential to implement new tec...Gas hydrates gained a remarkable attention as an unconventional energy resource recently. In order to interpret gas hydrates (part of fluid) and free gas saturated zone accurately, it is essential to implement new technique related to seismic attenuation and velocity dispersion. P wave attenuation and velocity dispersion in porous media made promising imprints for exploration of gas hydrates. The most prominent phenomenon for attenuation and velocity dispersion in porous media is wave induced fluid flow in which wave inhomogeneities are larger than pore size but smaller than wavelength. Numerical simulation technique is applied to analyze frequency dependent velocity dispersion and attenuation in gas hydrates and free gas layer in Makran offshore of Pakistan. Homogeneous and patchy distribution patterns of gas hydrates and free gas within pore spaces of host sediments at lower and higher frequency regime are considered. It is noted that the attenuation and velocity dispersion increase with the increase in gas hydrates saturation. The maximum attenuation is observed at 66% saturation of gas hydrates in the area under investigation. However, in case of water and gas mixture the maximum attenuation and velocity dispersion occur at low gas saturation (~15%). Therefore, based on our numerical simulation, velocity dispersion and attenuation can be used as seismic attributes to differentiate various gas saturations and gas hydrates saturation for Makran offshore area of Pakistan.展开更多
PS converted-waves (C-waves) have been commonly used to image through gas clouds but the C-wave imaging may also be degraded by the diodic effect introduced by the gas cloud. It may be compensated for using a veloci...PS converted-waves (C-waves) have been commonly used to image through gas clouds but the C-wave imaging may also be degraded by the diodic effect introduced by the gas cloud. It may be compensated for using a velocity perturbation method which decouples the diodic moveout into two parts: the base velocity and the velocity perturbation. Gas clouds are widely distributed in the Sanhu area in the Qaidam basin of northwest China which is rich in natural gas. A land 2D3C seismic dataset is analyzed from the Sanhu area and significant diodic effects are observed in the data which harm the C-wave imaging. The diodic correction is applied to this data and the resultant C-wave imaging and the details of the reservoir structure are significantly improved. The diodic moveout plays an important role in working out the residu~ shear wave statics and the association of diodie correction and shear wave residual statics computation is a key step of C-wave high fidelity imaging in the gas cloud area. Finally, the new process workflow with diodic moveout is given.展开更多
The delivery of the inert gas through a vertical borehole using inert gas generator or IGG is investigated.Potential limitations and/or transient effects are highlighted.During the analysis,the borehole diameter,boreh...The delivery of the inert gas through a vertical borehole using inert gas generator or IGG is investigated.Potential limitations and/or transient effects are highlighted.During the analysis,the borehole diameter,borehole length,type of borehole and partial condensation prior to entering the borehole were varied.A choked flow will occur for a contraction exit or borehole of 0.3 m in diameter if no condensation prior to the contraction occurs.If partial condensation takes place,a borehole diameter of 0.3 m will be possible if almost 50%of the water vapour condensates.However,pressure losses along boreholes with a diameter of 0.3 or 0.4 m are significant and could pose a challenge if trying to mitigate the pressure losses.Adding a booster fan prior to the inlet of the 0.4 m lined borehole would still be a challenge.The corresponding case with a 0.5 m borehole presents much more favourable pressure losses.The 0.5 m diameter lined borehole should be regarded as the lower threshold.The rapid heating of the unlined borehole surface will increase the risk of thermal spallation and possibly imposing restrictions.Understanding the mechanisms during gas delivery will increase the likelihood of a successful inertisation.展开更多
The electron swarm parameters including the density-normalized effective ionization coefficients(α-η)/N and the electron drift velocities V e are calculated for a gas mixture of CF3I with N2 and CO2 by solving the...The electron swarm parameters including the density-normalized effective ionization coefficients(α-η)/N and the electron drift velocities V e are calculated for a gas mixture of CF3I with N2 and CO2 by solving the Boltzmann equation in the condition of a steady-state Townsend(SST) experiment.The overall density-reduced electric field strength is from 100 Td to 1000 Td(1 Td = 10-17V·cm2),while the CF3I content k in the gas mixture can be varied over the range from 0% to 100%.From the variation of(αη)/N with the CF3I mixture ratio k,the limiting field strength(E/N) lim for each CF3I concentration is derived.It is found that for the mixtures with 70% CF3I,the values of(E/N) lim are essentially the same as that for pure SF 6.Additionally,the global warming potential(GWP) and the liquefaction temperature of the gas mixtures are also taken into account to evaluate the possibility of application in the gas insulation of power equipment.展开更多
Effect of bluff internals on the hydrodynamics and lateral gas mixing was studied in a 0.186m ID high-density riser. With the bluff internals, the extremely non-uniform radial profiles of solid fraction and particle v...Effect of bluff internals on the hydrodynamics and lateral gas mixing was studied in a 0.186m ID high-density riser. With the bluff internals, the extremely non-uniform radial profiles of solid fraction and particle velocity become flat and the dense downflow layer near the wall disappears, indicating the significant enhancement of solid turbulence introduced by the internals. The fluctuation velocity and solid fraction transient signal analysis indicates a significant increase in fluctuation intensity near the wall region. The length influenced by the internals on the flow structure is about 1 meter. The lateral gas dispersion coefficient increases significantly as the bluff internals exist in the riser.展开更多
文摘Based on the theory of optical scintillation induced by fluctuation of particulate concentration, a Gas Flow Velocity Measurement System (GFVMS) is proposed to measure the gas flow velocity in stack. Verification experiments on simulation flue indicate that, for the smoothing effect of transmitting and receiving apertures, optical scintillation induced by refractive index fluctuation is very weak. When particles are added into gas flow, the standard deviation of optical scintillation increased obviously. And when the particulate number concentration exceeds 4000/m3, the GFVMS can work normally, and the variation range of measured velocities is almost the same with that of Pitot tube. Sensitivity testing results show that, GFVMS is very sensitive to velocity change. Results of outfield experiment prove that, velocities measured by GFVMS are more stable and the average velocity (7.62/s) is very close to the statistical average (7.61 m/s) of velocities measured by Pitot tube at different points along optical path.
基金supported by the National Hi-tech Research and Development Program of China(863 Program)(Grant No.2013AA092501)the China Geological Survey Projects(Grant Nos.GZH201100303 and GZH201100305)
文摘To investigate the distribution and velocity attributes of gas hydrates in the northern continental slope of South China Sea, Guangzhou Marine Geological Survey conducted four-component (4C) ocean-bottom seismometer (OBS) surveys. A case study is presented to show the results of acquiring and processing OBS data for detecting gas hydrates. Key processing steps such as repositioning, reorientation, PZ summation, and mirror imaging are discussed. Repositioning and reorientation find the correct location and direction of nodes. PZ summation matches P- and Z-components and sums them to separate upgoing and downgoing waves. Upgoing waves are used in conventional imaging, whereas downgoing waves are used in mirror imaging. Mirror imaging uses the energy of the receiver ghost reflection to improve the illumination of shallow structures, where gas hydrates and the associated bottom-simulating reflections (BSRs) are located. We developed a new method of velocity analysis using mirror imaging. The proposed method is based on velocity scanning and iterative prestack time migration. The final imaging results are promising. When combined with the derived velocity field, we can characterize the BSR and shallow structures; hence, we conclude that using 4C OBS can reveal the distribution and velocity attributes of gas hydrates.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Nos.2022YFE03030001,2022YFE03020004 and 2022YFE 03050003)National Natural Science Foundation of China(Nos.12275310,11975275,12175277 and 11975271)+2 种基金the Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences(No.DSJJ-2021-01)the Collaborative Innovation Program of Hefei Science Center,Chinese Academy of Sciences(No.2021HSC-CIP019)the Users with Excellence Program of Hefei Science Center,Chinese Academy of Sciences(Nos.2021HSC-UE014 and 2021HSCUE012)。
文摘A gas puff imaging(GPI)diagnostic has been developed and operated on EAST since 2012,and the time-delay estimation(TDE)method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI data.However,with the TDE method it is difficult to analyze the data with fast transient events,such as edge-localized mode(ELM).Consequently,a method called the spatial displacement estimation(SDE)algorithm is developed to estimate the turbulence velocity with high temporal resolution.Based on the SDE algorithm,we make some improvements,including an adaptive median filter and super-resolution technology.After the development of the algorithm,a straight-line movement and a curved-line movement are used to test the accuracy of the algorithm,and the calculated speed agrees well with preset speed.This SDE algorithm is applied to the EAST GPI data analysis,and the derived propagation velocity of turbulence is consistent with that from the TDE method,but with much higher temporal resolution.
基金Supported by the National Natural Science Foundation of China(No.51478297)Program of Introducing Talents of Discipline(No.B13011)
文摘Based on the momentum conservation approach, a theoretical model was developed to predict the superficial liquid velocity, and a correlation equation was established to calculate the gas holdup of an annular external-loop airlift reactor(AELAR)in the bubble flow and developing slug flow pattern. Experiments were performed by using tap-water and silicone oil with the viscosity of 2.0 mm^2/s(2cs-SiO)and 5.0 mm^2/s(5cs-SiO)as liquid phases. The effects of liquid viscosity and flow pattern on the AELAR performance were investigated. The predictions of the proposed model were in good agreement with the experimental results of the AELAR. In addition, the comparison of the experimental results shows that the proposed model has good accuracy and could be used to predict the gas holdup and liquid velocity of an AELAR operating in bubble and developing flow pattern.
基金supported by the National Natural Science Foundation of China (Grant No. 10875050)
文摘Due to the scale invariance, the thermodynamic laws of strongly interacting limit unitary Fermi gas can be similar to those of non-interacting ideal gas. For example, the virial theorem between pressure and energy density of the ideal gas P = 2E/aV is still satisfied by the unitary Fermi gas. This paper analyses the sound velocity of unitary Fermi gases with the quasi-linear approximation. For comparison, the sound velocities for the ideal Boltzmann, Bose and Fermi gas are also given. Quite interestingly, the sound velocity formula for the ideal non-interacting gas is found to be satisfied by the unitary Fermi gas in different temperature regions.
基金the National Natural Science Foundation of China(90205009 and 10321002)the National Parallel Computing Center in Beijing.
文摘A gas-kinetic numerical method for directly solving the mesoscopic velocity distribution function equation is presented and applied to the study of three-dimensional complex flows and micro-channel flows covering various flow regimes. The unified velocity distribution function equation describing gas transport phenomena from rarefied transition to continuum flow regimes can be presented on the basis of the kinetic Boltzmann-Shakhov model equation. The gas-kinetic finite-difference schemes for the velocity distribution function are constructed by developing a discrete velocity ordinate method of gas kinetic theory and an unsteady time-splitting technique from computational fluid dynamics. Gas-kinetic boundary conditions and numerical modeling can be established by directly manipulating on the mesoscopic velocity distribution function. A new Gauss-type discrete velocity numerical integra- tion method can be developed and adopted to attack complex flows with different Mach numbers. HPF paral- lel strategy suitable for the gas-kinetic numerical method is investigated and adopted to solve three-dimensional complex problems. High Mach number flows around three-dimensional bodies are computed preliminarilywith massive scale parallel. It is noteworthy and of practical importance that the HPF parallel algorithm for solving three-dimensional complex problems can be effectively developed to cover various flow regimes. On the other hand, the gas-kinetic numerical method is extended and used to study micro-channel gas flows including the classical Couette flow, the Poiseuillechannel flow and pressure-driven gas flows in twodimensional short micro-channels. The numerical experience shows that the gas-kinetic algorithm may be a powerful tool in the numerical simulation of microscale gas flows occuring in the Micro-Electro-Mechanical System (MEMS).
基金supporting by the Youth Program of National Natural Science Foundation of China(52104012)the China Postdoctoral Science Foundation(2021M693494)+2 种基金the Key Program of the National Natural Science Foundation of China(51734010)the Key Natural Science Projects of Scientific Research Plan in Colleges and Universities of Xinjiang Uygur Autonomous Region(XJEDU2021I028)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-01-01)
文摘The purpose of this paper is to study the critical sand starting velocity and transformation law of flow pattern based on gas-water-sand three-phase flow in an inclined pipe.Firstly,the indoor simulation experiment system of gas-water-sand three-phase flow was used to test the conversion law of flow pattern based upon the different gas void fraction.Secondly,the influence of slug bubbles on sand migration was investigated according to distinctive hole deviation angles,gas void fraction and sand concentration.Finally,the critical sand starting velocity was tested based on dissimilar hole deviation angles,gas void fraction,sand concentration and sand particle size,and then the influence of the abovementioned key parameters on the sand starting velocity was debated based on the force analysis of the sand particles.The experimental results illustrated that when the gas void fraction was less than 5%,it was bubbly flow.When it increased from 5%to 30%,the bubbly flow and slug flow coexisted.When it was between 30%and 50%,the slug flow and agitated flow coexisted.When it reached 50%,it was agitated flow.Providing that the hole deviation angle was 90°,the phenomenon of overall migration and wavelike migration on the surface of sand bed was observed.On the contrary,the phenomenon of rolling and jumping migration was recognized.The critical sand starting velocity was positively correlated with the hole deviation angle and sand particle size,but negatively associated with the gas void fraction and sand concentration.This research can provide a certain reference for sand-starting production in the field of petroleum engineering.
基金Major Research and Development Project of Shanxi Province(No.201603D121012)
文摘In coal industry,gas explosion accidents emerge constantly,causing enormous casualties and poorer material property.In the course of studying gas exploding mechanism,the propagation velocity of the flame wave front is one of the most important factors.A set of flame velocity measuring system was designed according to the horizontal pipelined experimental facility of North University of China to study the effects of the quantity and blockage ratio of the circle ring obstacle on the flame propagation velocity in the inclosed tube.The research results show that the obstacle has obviously accelerating effect on the flame wave of gas explosion With the increase of quantity and blockage ratio of the obstacle,the flame accelerating effect becomes more obvious and the flame accelerating persistence is intenser,of which the effect of the quantity of the obstacle on the flame accelerating persistence is larger,but the effect of the blockage ratio of the obstacle on the flame accelerating persistenceis not obvious.
基金supported by the National Natural Science Foundation of China(41974139,42274148,42074142)。
文摘Horizontal gas-liquid two-phase flows widely exist in chemical engineering,oil/gas production and other important industrial processes.Slug flow pattern is the main form of horizontal gas-liquid flows and characterized by intermittent motion of film region and slug region.This work aims to develop the ultrasonic Doppler method to realize the simultaneous measurement of the velocity profile and liquid film thickness of slug flow.A single-frequency single-channel transducer is adopted in the design of the field-programmable gate array based ultrasonic Doppler system.A multiple echo repetition technology is used to improve the temporal-spatial resolution for the velocity profile.An experiment of horizontal gas-liquid two-phase flow is implemented in an acrylic pipe with an inner diameter of 20 mm.Considering the aerated characteristics of the liquid slug,slug flow is divided into low-aerated slug flow,high-aerated slug flow and pseudo slug flow.The temporal-spatial velocity distributions of the three kinds of slug flows are reconstructed by using the ultrasonic velocity profile measurement.The evolution characteristics of the average velocity profile in slug flows are investigated.A novel method is proposed to derive the liquid film thickness based on the instantaneous velocity profile.The liquid film thickness can be effectively measured by detecting the position and the size of the bubbles nearly below the elongated gas bubble.Compared with the time of flight method,the film thickness measured by the Doppler system shows a higher accuracy as a bubble layer occurs in the film region.The effect of the gas distribution on the film thickness is uncovered in three kinds of slug flows.
文摘In this study, the effects of the impact velocity on the particle deposition characteristics in cold gas dynamic spraying (CGDS) of 304 stainless steel (SS) on an interstitial free (IF) steel substrate are numerical simulated by means of a finite element analysis (FEA). The results have illustrated that when the particle impact velocity exceeds a critical value at which adiabatic shear instability of the particle starts to occur. Meanwhile, the fatten ratio and impact crater depth (or the effective contacting area ) increase rapidly. The particle-substrate bonding and deposition mechanism can be attributed to such an adiabatic shear deformation induced by both the compressive force and the slide friction force of particle. The critical velocity can be predicted by numerical simulation, which is useful to optimize the CGDS processing parameters for various materials.
文摘Elastic velocities(v_p and v_s)have been widely used in estimating gas hydrate saturation in void spaces of sediments.The commonly used models are empirical equations or some physically based models,such as Wyllie’s time average,Effective Medium Theory (EMT),Modified Biot-Gassmann Theory by Lee (BGTL),etc.These equations or models are selective to distinct conditions.In order to evaluate the app-
基金supported by the National Basic Research Program of China(Grant No.2011CB612305)the Natural Science Foundation of Hebei Province,China(Grant Nos.E2012201035 and E2011201134)
文摘The transport of ablated particles produced by single pulsed-laser ablation is simulated via Monte Carlo method. The pressure ranges of velocity splitting of ablated particles in different inert gases are investigated. The result shows that the range of velocity splitting decreases with the atomic mass of the ambient gas increasing. The ambient gas whose atomic mass is more than that of Kr cannot induce the velocity splitting of ablated particles. The results are explained by the underdamping model and the inertia flow model.
基金supported by the National Natural Science Foundation of China (No.40702024)the Project was sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China (No.2009022014)Open Research Foundation of Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences),Ministry of Education (No.TPR-2009-33)
文摘In the DF1-1 Gas Field in the Yinggehai Basin, South China Sea, the velocity-depth plot and velocity spectra show significant variations from a linear trend, exhibiting a distinct reversal phenomenon. Velocity parameters derived from velocity spectral analysis of the seismic data and sonic logs indicate that the interval velocity reverses below 2,100 m (2.2 s two-way time (TWT)) in the DF1-1 Gas Field. Some direct hydrocarbon indicators (DHIs) models developed for the shallow strata cannot be simply applied to the moderately to deeply buried strata for direct exploration target recognition because the velocity reversal has caused the middle-deep gas reservoirs to exhibit a moderate or weak seismic amplitude. The hydrocarbon indicator method of “Differential Interformational Velocity Analysis (DIVA)” with the aid of other hydrocarbon indicating techniques was employed to effectively identify DHIs in the middle-deep strata under velocity inversion. The result has shown that the DIVA technique can be effectively used as a DHI in both the shallow and the middle-deep strata in the study area with the shallow strata characterized by Type I DIVA anomaly and the middle-deep strata characterized by the Type II DIVA anomaly.
文摘Recently, velocity prediction and modeling have been focus of the geophysical exploration in the high temperature and high pressure of the south China sea area, especially for new offshore exploratory areas. The error is large with great difficulty owing to fewer exploratory wells and misunderstanding. Firstly, on the basis of three typical velocity prediction and modeling examples in Ying-Qiong basin, it’s easy to put forward the corresponding not common but urgent problem in each instance, then combined with the velocity problem and misunderstanding to expand method discussion and solution, which include geological model to guide the velocity interpretation and analysis, the establishment of forward velocity of the auxiliary model explaining and constructing high precision velocity model. This research basically solves existing velocity problems in gas exploration of south China sea in recent years, and proposes corresponding solution and application, which is of great significance to the further exploration and productive practice.
基金Supported by National Natural Science Foundation of China(21978171)。
文摘Based on the assumption of gas-liquid stratified flow pattern in inclined gas wells,considering the influence of wettability and surface tension on the circumferential distribution of liquid film along the wellbore wall,the influence of the change of the gas-liquid interface configuration on the potential energy,kinetic energy and surface free energy of the two-phase system per unit length of the tube is investigated,and a new model for calculating the gas-liquid distribution at critical conditions is developed by using the principle of minimum energy.Considering the influence of the inclination angle,the calculation model of interfacial friction factor is established,and finally closed the governing equations.The interface shape is more vulnerable to wettability and surface tension at a low liquid holdup,resulting in a curved interface configuration.The interface is more curved when the smaller is the pipe diameter,or the smaller the liquid holdup,or the smaller the deviation angle,or the greater gas velocity,or the greater the gas density.The critical liquid-carrying velocity increases nonlinearly and then decreases with the increase of inclination angle.The inclination corresponding to the maximum critical liquid-carrying velocity increases with the increase of the diameter of the wellbore,and it is also affected by the fluid properties of the gas phase and liquid phase.The mean relative errors for critical liquid-carrying velocity and critical pressure gradient are 1.19%and 3.02%,respectively,and the misclassification rate is 2.38%in the field trial,implying the new model can provide a valid judgement on the liquid loading in inclined gas wells.
文摘Gas hydrates gained a remarkable attention as an unconventional energy resource recently. In order to interpret gas hydrates (part of fluid) and free gas saturated zone accurately, it is essential to implement new technique related to seismic attenuation and velocity dispersion. P wave attenuation and velocity dispersion in porous media made promising imprints for exploration of gas hydrates. The most prominent phenomenon for attenuation and velocity dispersion in porous media is wave induced fluid flow in which wave inhomogeneities are larger than pore size but smaller than wavelength. Numerical simulation technique is applied to analyze frequency dependent velocity dispersion and attenuation in gas hydrates and free gas layer in Makran offshore of Pakistan. Homogeneous and patchy distribution patterns of gas hydrates and free gas within pore spaces of host sediments at lower and higher frequency regime are considered. It is noted that the attenuation and velocity dispersion increase with the increase in gas hydrates saturation. The maximum attenuation is observed at 66% saturation of gas hydrates in the area under investigation. However, in case of water and gas mixture the maximum attenuation and velocity dispersion occur at low gas saturation (~15%). Therefore, based on our numerical simulation, velocity dispersion and attenuation can be used as seismic attributes to differentiate various gas saturations and gas hydrates saturation for Makran offshore area of Pakistan.
基金supported by the National Natural Science Foundation of China (No. 41074080)the Important National Science & Technology Specific Projects (No. 2011ZX05019-008)
文摘PS converted-waves (C-waves) have been commonly used to image through gas clouds but the C-wave imaging may also be degraded by the diodic effect introduced by the gas cloud. It may be compensated for using a velocity perturbation method which decouples the diodic moveout into two parts: the base velocity and the velocity perturbation. Gas clouds are widely distributed in the Sanhu area in the Qaidam basin of northwest China which is rich in natural gas. A land 2D3C seismic dataset is analyzed from the Sanhu area and significant diodic effects are observed in the data which harm the C-wave imaging. The diodic correction is applied to this data and the resultant C-wave imaging and the details of the reservoir structure are significantly improved. The diodic moveout plays an important role in working out the residu~ shear wave statics and the association of diodie correction and shear wave residual statics computation is a key step of C-wave high fidelity imaging in the gas cloud area. Finally, the new process workflow with diodic moveout is given.
文摘The delivery of the inert gas through a vertical borehole using inert gas generator or IGG is investigated.Potential limitations and/or transient effects are highlighted.During the analysis,the borehole diameter,borehole length,type of borehole and partial condensation prior to entering the borehole were varied.A choked flow will occur for a contraction exit or borehole of 0.3 m in diameter if no condensation prior to the contraction occurs.If partial condensation takes place,a borehole diameter of 0.3 m will be possible if almost 50%of the water vapour condensates.However,pressure losses along boreholes with a diameter of 0.3 or 0.4 m are significant and could pose a challenge if trying to mitigate the pressure losses.Adding a booster fan prior to the inlet of the 0.4 m lined borehole would still be a challenge.The corresponding case with a 0.5 m borehole presents much more favourable pressure losses.The 0.5 m diameter lined borehole should be regarded as the lower threshold.The rapid heating of the unlined borehole surface will increase the risk of thermal spallation and possibly imposing restrictions.Understanding the mechanisms during gas delivery will increase the likelihood of a successful inertisation.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51177101)
文摘The electron swarm parameters including the density-normalized effective ionization coefficients(α-η)/N and the electron drift velocities V e are calculated for a gas mixture of CF3I with N2 and CO2 by solving the Boltzmann equation in the condition of a steady-state Townsend(SST) experiment.The overall density-reduced electric field strength is from 100 Td to 1000 Td(1 Td = 10-17V·cm2),while the CF3I content k in the gas mixture can be varied over the range from 0% to 100%.From the variation of(αη)/N with the CF3I mixture ratio k,the limiting field strength(E/N) lim for each CF3I concentration is derived.It is found that for the mixtures with 70% CF3I,the values of(E/N) lim are essentially the same as that for pure SF 6.Additionally,the global warming potential(GWP) and the liquefaction temperature of the gas mixtures are also taken into account to evaluate the possibility of application in the gas insulation of power equipment.
文摘Effect of bluff internals on the hydrodynamics and lateral gas mixing was studied in a 0.186m ID high-density riser. With the bluff internals, the extremely non-uniform radial profiles of solid fraction and particle velocity become flat and the dense downflow layer near the wall disappears, indicating the significant enhancement of solid turbulence introduced by the internals. The fluctuation velocity and solid fraction transient signal analysis indicates a significant increase in fluctuation intensity near the wall region. The length influenced by the internals on the flow structure is about 1 meter. The lateral gas dispersion coefficient increases significantly as the bluff internals exist in the riser.