期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Elimination of cracks in stainless steel casings via 3D printed sand molds with an internal topology structure
1
作者 Jun-hang Xu Bao-zhi Li +6 位作者 Zhao-wei Song Yun-bao Gao Jing-ming Li Yu Wang Qiu-lin Wen Heng Cao Zeng-rui Wang 《China Foundry》 SCIE EI CAS CSCD 2024年第4期319-326,共8页
The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects... The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects are prone to occur.This leads to an increase in the scrap rate of casings,causing significant resource wastage.Additionally,the presence of cracks poses a significant safety hazard after the casings are put into service.The generation of different types of crack defects in stainless steel casings is closely related to casting stress and the high-temperature concession of the sand mold.Therefore,the types and causes of cracks in stainless steel casing products,based on their structural characteristics,were systematically analyzed.Various sand molds with different internal topology designs were printed using the 3DP technology to investigate the impact of sand mold structures on high-temperature concession.The optimal sand mold structure was used to cast casings,and the crack suppression effect was verified by analyzing its eddy current testing results.The experimental results indicate that the skeleton structure has an excellent effect on suppressing cracks in the casing.This research holds important theoretical and engineering significance in improving the quality of casing castings and reducing production costs. 展开更多
关键词 gas turbine casing crack defects 3D printed sand mold topological structure high-temperature concession
下载PDF
Transport model for shale gas well leakage through the surrounding fractured zones of a longwall mine 被引量:5
2
作者 Kayode M.Ajayi Steven J.Schatzel 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第5期635-641,共7页
The environmental risks associated with casing deformation in unconventional(shale)gas wells positioned in abutment pillars of longwall mines is a concern to many in the mining and gas well industry.With the recent in... The environmental risks associated with casing deformation in unconventional(shale)gas wells positioned in abutment pillars of longwall mines is a concern to many in the mining and gas well industry.With the recent interest in shale exploration and the proximity to longwall mining in Southwestern Pennsylvania,the risk to mine workers could be catastrophic as fractures in surrounding strata create pathways for transport of leaked gases.Hence,this research by the National Institute for Occupational Safety and Health(NIOSH)presents an analytical model of the gas transport through fractures in a low permeable stratum.The derived equations are used to conduct parametric studies of specific transport conditions to understand the influence of stratum geology,fracture lengths,and the leaked gas properties on subsurface transport.The results indicated that the prediction that the subsurface gas flux decreases with an increase in fracture length is specifically for a non-gassy stratum.The sub-transport trend could be significantly impacted by the stratum gas generation rate within specific fracture lengths,which emphasized the importance of the stratum geology.These findings provide new insights for improved understanding of subsurface gas transport to ensure mine safety. 展开更多
关键词 Subsurface gas transport Longwall mining Shale gas well Analytical modeling Environmental risk Shale gas casing failure
下载PDF
Effect of Plastic Deformation and H_2S on Dynamic Fracture Toughness of High Strength Casing Steel 被引量:1
3
作者 曾德智 ZHANG Naiyan +3 位作者 TIAN Gang HU Junying ZHANG Zhi SHI Taihe 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期397-403,共7页
The effects of plastic deformation and H2 S on fracture toughness of high strength casing steel(C110 steel) were investigated. The studied casing specimens are as follows: original casing, plastic deformation(PD)... The effects of plastic deformation and H2 S on fracture toughness of high strength casing steel(C110 steel) were investigated. The studied casing specimens are as follows: original casing, plastic deformation(PD) casing and PD casing after being immersed in NACE A solution saturated with H2S(PD+H2S). Instrumented impact method was employed to evaluate the impact behaviors of the specimens, meanwhile, dynamic fracture toughness(JId) was calculated by using Rice model and Schindler model. The experimental results show that dynamic fracture toughness of the casing decreases after plastic deformation. Compared with that of the original casing and PD casing, the dynamic fracture toughness decreases further when the PD casing immersed in H2 S, moreover, there are ridge-shaped feature and many secondary cracks present on the fracture surface of the specimens. Impact fracture mechanism of the casing is proposed as follows: the plastic deformation results in the increase of defect density of materials where the atomic hydrogen can accumulate in reversible or irreversible traps and even recombine to form molecular hydrogen, subsequently, the casing material toughness decreases greatly. 展开更多
关键词 sour gas fields high strength casing C110 steel plastic deformation H2S fracture toughness
下载PDF
Measurement-While-Milling(MWM):An innovative approach for increasing the casing milling efficiency in deep drilling operations
4
作者 Mohammed A.Namuq Mouhammed Jandal Berro Matthias Reich 《Petroleum Research》 EI 2023年第3期360-369,共10页
Deep boreholes are secured by steel tubes(casings)which are run in the hole and cemented in place.In most cases,these casings are considered a permanent installation.However,sometimes they have to be removed in order ... Deep boreholes are secured by steel tubes(casings)which are run in the hole and cemented in place.In most cases,these casings are considered a permanent installation.However,sometimes they have to be removed in order to repair or abandon the well.As the casing is cemented in place,it cannot be pulled,but needs to be milled to small chips which are flushed out of the borehole by the drilling mud.One of the main challenges in casing milling operations is continuous and complete chip removal.If the metal chips are too long,chip nests will grow around the milling string.As a result,this will restrict the annulus flow area and affect the chip removal in boreholes.The obvious solution in such condition is to do round tripping and clean the chip nest which is associated with the risk of injuries,as well as,increasing the none-productive time.In the worst case,the poor cleaning and circulation of chips can even end up with the milling string stucking problem in boreholes,consequently long-time fishing job.According to the available literatures,hardly any study for identifying the chip shapes and accordingly adapting the operation parameters to the casing milling process environment downhole to keep milling within desired generated chip shapes and sizes could be found.This paper presents an encouraging idea to monitor the milling process in real time by utilizing the acoustic emission signals(vibration modes)accompanied with the milling process to identify the desired chip shape and size range.Initial laboratory tests have been carried out to investigate and study the acoustic emission signals accompanying the casing milling process to identify the chip shapes and sizes.The preliminary test results show very good correlation and agreement between the chip length formed during those specific tests and the observed burst events in the measured signals.The study results have demonstrated the functionality of the new concept,and thus confirmed that it is a very promising idea towards developing a practical real time downhole monitoring system for milling operations.Adapting the milling operation parameters downhole in real time to keep the milling process within the desired generated chip shapes and sizes will offer better cleaning and removal of the chips and will prevent the development of chip nest around the drill string and its consequences such as round tripping,risk of drilling crew injury,none-productive time and even milling string stucking problems. 展开更多
关键词 Oil/gas well casing milling Measurement while milling casing milling chips shape detection Acoustic emission accompanied with casing milling operations casing milling experiments
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部