A Pt-Rh three-way catalyst(M-DS) supported on CeO_2-ZrO_2-La_2O_3-Nd_2O_3 and its analogous supported catalyst(DS) were developed via a modified double-solvent method and conventional double-solvent method, respec...A Pt-Rh three-way catalyst(M-DS) supported on CeO_2-ZrO_2-La_2O_3-Nd_2O_3 and its analogous supported catalyst(DS) were developed via a modified double-solvent method and conventional double-solvent method, respectively. The as-prepared catalysts were characterized by N_2 adsorption-desorption, X-ray diffraction(XRD), CO-chemisorption, X-ray photoelectron spectroscopy(XPS) and hydrogen temperature-programmed reduction(H_2-TPR). The preformed Pt nanoparticles generated using ethanol as a reducing agent on M-DS presented enhanced Pt dispersion regardless of aging treatment as confirmed by XRD and CO-chemisorption measurements. The textural properties and reduction ability of M-DS were maintained to a large extent after aging treatment. This result was consistent with those of the N_2 adsorption-desorption and H_2-TPR, respectively. Meanwhile, the XPS analysis demonstrated that higher Pt^0 species and larger Ce^(3+) concentration could be obtained for M-DS. In the conversion of a simulated compressed natural gas(CNG) vehicle exhaust, both fresh and aged M-DS showed a significant enhancement in the activity and N_2-selectivity. Particularly, the complete conversion temperature(T_(90)) of CH_4 over the aged M-DS catalyst was 65 oC lower than that over the aged catalyst by conventional double-solvent method.展开更多
The catalytic activity of carbon nanotubes-supported vanadium oxide(V_2O_5/CNTs) catalysts in the selective catalytic reduction(SCR) of NO with NH_3 at low temperatures(<250℃) was investigated.The effects of V_2O_...The catalytic activity of carbon nanotubes-supported vanadium oxide(V_2O_5/CNTs) catalysts in the selective catalytic reduction(SCR) of NO with NH_3 at low temperatures(<250℃) was investigated.The effects of V_2O_5loading,reaction temperature,and presence of SO_2 on the SCR activity were evaluated.The results show that V_2O_5/CNTs catalysts exhibit high activity for NO reduction with NH_3 at low-temperatures.The catalysts also show very high stability in the presence of SO_2.More interestingly,their activities are significantly promoted instead of being poisoned by SO_2.The promoting effect of SO_2 is distinctly associated with V_2O_5 loading,particularly maximized at low V_2O_5 loading,which indicated the role of CNTs support in this effect.The promoting effect of SO_2 at low temperatures suggests that V_2O_5/CNTs catalysts are promising catalytic materials for low-temperature SCR reactions.展开更多
Effects of carrier gas composition(N2/air) on NH3 production, energy efficiency regarding NH3 production and byproducts formation from plasma-catalytic decomposition of urea were systematically investigated using an...Effects of carrier gas composition(N2/air) on NH3 production, energy efficiency regarding NH3 production and byproducts formation from plasma-catalytic decomposition of urea were systematically investigated using an Al2 O3-packed dielectric barrier discharge(DBD) reactor at room temperature. Results show that the presence of O2 in the carrier gas accelerates the conversion of urea but leads to less generation of NH3. The final yield of NH3 in the gas phase decreased from 70.5%, 78.7%, 66.6% and 67.2% to 54.1%, 51.7%, 49.6% and 53.4% for applied voltages of 17, 19, 21 and 23 kV, respectively when air was used as the carrier gas instead of N2.From the viewpoint of energy savings, however, air carrier gas is better than N2 due to reduced energy consumption and increased energy efficiency for decomposition of a fixed amount of urea. Carrier gas composition has little influence on the major decomposition pathways of urea under the synergetic effects of plasma and Al2 O3 catalyst to give NH3 and CO2 as the main products. Compared to a small amount of N2 O formed with N2 as the carrier gas, however,more byproducts including N2O and NO2 in the gas phase and NH4 NO3 in solid deposits were produced with air as the carrier gas, probably due to the unproductive consumption of NH3, the possible intermediate HNCO and even urea by the abundant active oxygen species and nitrogen oxides generated in air-DBD plasma.展开更多
基金supported by the National Key Research and Development Program of China(2016YFC0204902)
文摘A Pt-Rh three-way catalyst(M-DS) supported on CeO_2-ZrO_2-La_2O_3-Nd_2O_3 and its analogous supported catalyst(DS) were developed via a modified double-solvent method and conventional double-solvent method, respectively. The as-prepared catalysts were characterized by N_2 adsorption-desorption, X-ray diffraction(XRD), CO-chemisorption, X-ray photoelectron spectroscopy(XPS) and hydrogen temperature-programmed reduction(H_2-TPR). The preformed Pt nanoparticles generated using ethanol as a reducing agent on M-DS presented enhanced Pt dispersion regardless of aging treatment as confirmed by XRD and CO-chemisorption measurements. The textural properties and reduction ability of M-DS were maintained to a large extent after aging treatment. This result was consistent with those of the N_2 adsorption-desorption and H_2-TPR, respectively. Meanwhile, the XPS analysis demonstrated that higher Pt^0 species and larger Ce^(3+) concentration could be obtained for M-DS. In the conversion of a simulated compressed natural gas(CNG) vehicle exhaust, both fresh and aged M-DS showed a significant enhancement in the activity and N_2-selectivity. Particularly, the complete conversion temperature(T_(90)) of CH_4 over the aged M-DS catalyst was 65 oC lower than that over the aged catalyst by conventional double-solvent method.
基金Supported by the National Natural Science Foundation of China(21006065)the Zhejiang Provincial Natural Science Foundation of China(Y5100009)
文摘The catalytic activity of carbon nanotubes-supported vanadium oxide(V_2O_5/CNTs) catalysts in the selective catalytic reduction(SCR) of NO with NH_3 at low temperatures(<250℃) was investigated.The effects of V_2O_5loading,reaction temperature,and presence of SO_2 on the SCR activity were evaluated.The results show that V_2O_5/CNTs catalysts exhibit high activity for NO reduction with NH_3 at low-temperatures.The catalysts also show very high stability in the presence of SO_2.More interestingly,their activities are significantly promoted instead of being poisoned by SO_2.The promoting effect of SO_2 is distinctly associated with V_2O_5 loading,particularly maximized at low V_2O_5 loading,which indicated the role of CNTs support in this effect.The promoting effect of SO_2 at low temperatures suggests that V_2O_5/CNTs catalysts are promising catalytic materials for low-temperature SCR reactions.
基金supported by the National Natural Science Foundation of China (Nos. 21547004, 51638001)the Beijing Natural Science Foundation (No. 8152011)the Scientific Research Program of Beijing Municipal Education Commission (No. KM201510005009)
文摘Effects of carrier gas composition(N2/air) on NH3 production, energy efficiency regarding NH3 production and byproducts formation from plasma-catalytic decomposition of urea were systematically investigated using an Al2 O3-packed dielectric barrier discharge(DBD) reactor at room temperature. Results show that the presence of O2 in the carrier gas accelerates the conversion of urea but leads to less generation of NH3. The final yield of NH3 in the gas phase decreased from 70.5%, 78.7%, 66.6% and 67.2% to 54.1%, 51.7%, 49.6% and 53.4% for applied voltages of 17, 19, 21 and 23 kV, respectively when air was used as the carrier gas instead of N2.From the viewpoint of energy savings, however, air carrier gas is better than N2 due to reduced energy consumption and increased energy efficiency for decomposition of a fixed amount of urea. Carrier gas composition has little influence on the major decomposition pathways of urea under the synergetic effects of plasma and Al2 O3 catalyst to give NH3 and CO2 as the main products. Compared to a small amount of N2 O formed with N2 as the carrier gas, however,more byproducts including N2O and NO2 in the gas phase and NH4 NO3 in solid deposits were produced with air as the carrier gas, probably due to the unproductive consumption of NH3, the possible intermediate HNCO and even urea by the abundant active oxygen species and nitrogen oxides generated in air-DBD plasma.