The coal tar was qualitative and quantitative anMyzed by gas chromatography (GC) method. 74 components were identified exactly by gas chromatographY-mass spectrometry (GC-MS). 31 components (37%) were quantitati...The coal tar was qualitative and quantitative anMyzed by gas chromatography (GC) method. 74 components were identified exactly by gas chromatographY-mass spectrometry (GC-MS). 31 components (37%) were quantitatively analyzed by gas chromatography-flame ionization detector (GC-FID). The linearity, accuracy, precision, limit of detection (LOD) and limit of quantitative (LOQ) determination were inspected. The scope of quantitative analysis by CC was discussed. The experimental results of thermogravimetric analysis (TGA) proved that GC quantitative analysis of the coal tar was reliable.展开更多
As more attention is being paid to the characteristics of atmospheric amines,there is also an increasing demand for reliable detection technologies.Herein,a method was developed for simultaneous detection of atmospher...As more attention is being paid to the characteristics of atmospheric amines,there is also an increasing demand for reliable detection technologies.Herein,a method was developed for simultaneous detection of atmospheric amines in both gaseous and particulate phases using gas chromatography-mass spectrometry(GC-MS).The amine samples were collected with and without phosphoric acid filters,followed by derivatization with benzenesulfonyl chloride under alkaline condition prior to GC-MS analysis.Furthermore,the method was optimized and validated for determining 14 standard amines.The detection limits ranged from0.0408-0.421μg/mL(for gaseous samples)and 0.163-1.69μg/mL(for particulate samples),respectively.The obtained recoveries ranged from 68.8%-180%and the relative standard deviation was less than 30%,indicating high precision and good reliability of the method.Seven amines were simultaneously detected in gaseous and particulate samples in an industrial park using the developed method successfully.Methylamine,dimethylamine and diethylamine together accounted for 76.7%and 75.6%of particulate and gaseous samples,respectively.By comparing the measured and predicted values of gas-particle partition fractions,it was found that absorption process of aqueous phase played a more important role in the gas-partition of amines than physical adsorption.Moreover,the reaction between unprotonated amines and acid(aq.)in water phase likely promoted water absorption.Higher measured partition fraction of dibutylamine was likely due to the reaction with gaseous HCl.The developed method would help provide a deeper understanding of gas-particle partitioning as well as atmospheric evolution of amines.展开更多
基金Project supported by the National High-Technology Research and Development of China (Grant No.2006AA11A189)the Key Project of Science and Technology Commission of Shanghai (Grant No.06DZ12212)
文摘The coal tar was qualitative and quantitative anMyzed by gas chromatography (GC) method. 74 components were identified exactly by gas chromatographY-mass spectrometry (GC-MS). 31 components (37%) were quantitatively analyzed by gas chromatography-flame ionization detector (GC-FID). The linearity, accuracy, precision, limit of detection (LOD) and limit of quantitative (LOQ) determination were inspected. The scope of quantitative analysis by CC was discussed. The experimental results of thermogravimetric analysis (TGA) proved that GC quantitative analysis of the coal tar was reliable.
基金supported from the National Natural Science Foundation of China(Nos.42020104001 and 41805103)Local Innovative and Research Team Project of Guangdong Pearl River Talents Program(No.2017BT01Z032)the Fund from Chemistry and Chemical Engineering Guangdong Laboratory(No.1922009)
文摘As more attention is being paid to the characteristics of atmospheric amines,there is also an increasing demand for reliable detection technologies.Herein,a method was developed for simultaneous detection of atmospheric amines in both gaseous and particulate phases using gas chromatography-mass spectrometry(GC-MS).The amine samples were collected with and without phosphoric acid filters,followed by derivatization with benzenesulfonyl chloride under alkaline condition prior to GC-MS analysis.Furthermore,the method was optimized and validated for determining 14 standard amines.The detection limits ranged from0.0408-0.421μg/mL(for gaseous samples)and 0.163-1.69μg/mL(for particulate samples),respectively.The obtained recoveries ranged from 68.8%-180%and the relative standard deviation was less than 30%,indicating high precision and good reliability of the method.Seven amines were simultaneously detected in gaseous and particulate samples in an industrial park using the developed method successfully.Methylamine,dimethylamine and diethylamine together accounted for 76.7%and 75.6%of particulate and gaseous samples,respectively.By comparing the measured and predicted values of gas-particle partition fractions,it was found that absorption process of aqueous phase played a more important role in the gas-partition of amines than physical adsorption.Moreover,the reaction between unprotonated amines and acid(aq.)in water phase likely promoted water absorption.Higher measured partition fraction of dibutylamine was likely due to the reaction with gaseous HCl.The developed method would help provide a deeper understanding of gas-particle partitioning as well as atmospheric evolution of amines.