The presence of shale gas has been confirmed in almost every marine shale distribution area in North America.Formation conditions of shale gas in China are the most favorable for marine,organic-rich shale as well.But ...The presence of shale gas has been confirmed in almost every marine shale distribution area in North America.Formation conditions of shale gas in China are the most favorable for marine,organic-rich shale as well.But there has been little research focusing on shale gas in Qiangtang Basin,Qinghai-Tibet Plateau,where a lot of Mesozoic marine shale formations developed.Based on the survey results of petroleum geology and comprehensive test analysis data for Qinghai-Tibet Plateau,for the first time,this paper discusses characteristics of sedimentary development,thickness distribution,geochemistry,reservoir and burial depth of organic-rich shale,and geological conditions for shale gas formation in Qiangtang Basin.There are four sets of marine shale strata in Qiangtang Basin including Upper Triassic Xiaochaka Formation (T3x),Middle Jurassic Buqu Formation (J2b),Xiali Formation (J2x) and Upper Jurassic Suowa Formation (J3s),the sedimentary types of which are mainly bathyal-basin facies,open platform-platform margin slope facies,lagoon and tidal-fiat facies,as well as delta facies.By comparing it with the indicators of gas shale in the main U.S.basins,it was found that the four marine shale formations in Qiangtang Basin constitute a multi-layer distribution of organic-rich shale,featuring a high degree of thickness and low abundance of organic matter,high thermal evolution maturity,many kinds of brittle minerals,an equivalent content of quartz and clay minerals,a high content of feldspar and low porosity,which provide basic conditions for an accumulation of shale gas resources.Xiaochaka Formation shale is widely distributed,with big thickness and the best gas generating indicators.It is the main gas source layer.Xiali Formation shale is of intermediate thickness and coverage area,with relatively good gas generating indicators and moderate gas formation potential.Buqu Formation shale and Suowa Formation shale are of relatively large thickness,and covering a small area,with poor gas generating indicators,and limited gas formation potential.The shale gas geological resources and technically recoverable resources were estimated by using geologic analogy method,and the prospective areas and potentially favorable areas for Mesozoic marine shale gas in Qiangtang Basin are forecast and analyzed.It is relatively favorable in a tectonic setting and indication of oil and gas,shale maturity,sedimentary thickness and gypsum-salt beds,and in terms of mineral association for shale gas accumulation.But the challenge lies in overcoming the harsh natural conditions which contributes to great difficulties in ground engineering and exploration,and high exploration costs.展开更多
Conditions for the Formation of oil and gas pools in Tertiary volcanics in the western part of the Huimin sag, Shandong and then (?)stribution have been studied based on the geological, seismic and well-logging inform...Conditions for the Formation of oil and gas pools in Tertiary volcanics in the western part of the Huimin sag, Shandong and then (?)stribution have been studied based on the geological, seismic and well-logging information. In this paper, the types and lithofacies of the volcanic rocks in the western part of the Huimin sag are described; the relationship between rocks and electrical properties, the seismic reflection structures, the development and distribution of the volcanic rocks are expounded; and the fourfold role of the volcanic activities in the formation of the oil and gas pools is also dealt with. It is considered by the authors that the volcanic activities were not destructive to the formation of oil and gas pools but a factor favourable to the accumulation of organic matters and their conversion to hydrocarbon. The volcanic rocks might have served as reservoir rocks and cap rocks, or as a synsedimentary anticline. The prerequisites and important factors for the formation of oil and gas pools and their distribution are pointed out in the paper.展开更多
Although carbon isotope reversal and its reasons in shale gas reservoirs have been widely recognized,the application of the reversal is yet to be investigated.A study on high-maturity shale from Wufeng and Longmaxi Fo...Although carbon isotope reversal and its reasons in shale gas reservoirs have been widely recognized,the application of the reversal is yet to be investigated.A study on high-maturity shale from Wufeng and Longmaxi Formations in the Sichuan Basin not only reveals the relationship between the degree of isotopes inversion and the production capacity(e.g.,estimated ultimate recovery(EUR))of the gas well but also indicates the preservation conditions of shale gas reservoirs.(1)Although there are differences in gas isotopes in different shale gas reservoirs,the isotope fractionation of shale gas is small during the production stage of gas wells,even when the wellbore pressure drops to zero.The main cause of the difference in carbon isotopes and their inversion degree can be the uplift time during the Yanshan period and the formation pressure relief degree of shale gas reservoirs in distinct structural positions.Thus,carbon isotope inversion is a good indicator of shale gas preservation condition and EUR of shale gas wells.(2)The degree of carbon isotope inversion correlates strongly with shale gas content and EUR.The calculation formula of shale-gas recoverable reserves was established using△δ^(13)C(δC_(1)-δC_(2))and EUR.(3)The gas loss rate and total loss amount can be estimated using the dynamic reserves and isotopic difference values of gas wells in various shale gas fields,which also reflects the current methane loss,thereby demonstrating great potential for evaluating global methane loss in shales.展开更多
Seepage-type gas hydrate accumulation in subsea shallow formations involves complicated thermohydro-solid coupling processes and matching problem between various accumulation elements.Theformation physical properties ...Seepage-type gas hydrate accumulation in subsea shallow formations involves complicated thermohydro-solid coupling processes and matching problem between various accumulation elements.Theformation physical properties control local natural gas migration pathway and thus the final reservoircharacteristics of hydrates.In this paper,a novel mixed-flux model for gas hydrate accumulation isestablished and then used to simulate the process of methane gas migration into the shallow stratum toform a hydrate reservoir.The effects of reservoir heterogeneity and gas source conditions on the distribution of pore fluid and hydrate accumulation are examined.The simulation results show thatreservoir heterogeneity is conducive to the retention and lateral migration of CH4 in a hydrate stabilityzone.CH4 can contact more pore water to form a large hydrate reserve,but the formed hydrate is oftendispersed.Low-permeability layers enhance the trapping of CH4 and form a uniform and large hydratesaturation.Besides,gas source conditions have an important impact on the hydrate accumulation inreservoirs.Large gas flux,small pore water flux,continuous gas supply,high content of heavy components in natural gas,and numerous gas source points contribute to large amounts of hydrates generationin a certain time period.The presented work will deepen our understanding of the controls of natural gashydrate systems in subea shallow formations.展开更多
Many scholars carried out large quantity of researches on oil and gas preservative condi-tions of marine carbonate rocks from the aspects of cap rocks,faults,formation water,hydrodynamic,and tectonism.This article giv...Many scholars carried out large quantity of researches on oil and gas preservative condi-tions of marine carbonate rocks from the aspects of cap rocks,faults,formation water,hydrodynamic,and tectonism.This article gives dynamic evaluation on oil and gas preservative conditions of marine stratum in Jianghan(江汉) plain of multiphase tectonic disturbance from the view of paleofluid geo-chemistry.The conclusion shows that there mainly existed fluid filling of two periods in the reservoir of Lower-Middle Triassic to Permian.The fluid filled in the earlier period came from Lower Palaeozoic.The interchange of fluid in Lower-Middle Triassic to Permian suggested the oil and gas in Lower Pa-laeozoic had been broken up.The fluid filled in the later period(Lower-Middle Triassic to Permian) came from the same or adjacent strata and lacked anatectic fluidogenous features coming from Palaeozoic.With good preservative conditions of bulk fluid at the time,the fluid of Lower-Middle Triassic to Permian and that of Lower Palaeozoic did not connect with each other.However,the hydrocarbon generation peak of marine source rocks had passed or the paleo-oil and gas reser-voirs had been destroyed at that time and the marine stratum of Palaeozoic to Triassic in the research area did not put out commercial oil and gas flow.展开更多
In this paper, we prove the local existence, uniqueness and stability of a supersonic shock for the supersonic isothermal incoming flow past a curved cone. Major difficulties include constructing an appropriate soluti...In this paper, we prove the local existence, uniqueness and stability of a supersonic shock for the supersonic isothermal incoming flow past a curved cone. Major difficulties include constructing an appropriate solution and treatincg the Neumann boundary conditions and local stability condition.展开更多
基金co-funded by National Science and Technology Major Special Project (Grant No.2011ZX05018-001 and 2011ZX05028-002)PetroChina Co. Ltd. Project (Grant No.2011D-5002-02, 2014E-050202)
文摘The presence of shale gas has been confirmed in almost every marine shale distribution area in North America.Formation conditions of shale gas in China are the most favorable for marine,organic-rich shale as well.But there has been little research focusing on shale gas in Qiangtang Basin,Qinghai-Tibet Plateau,where a lot of Mesozoic marine shale formations developed.Based on the survey results of petroleum geology and comprehensive test analysis data for Qinghai-Tibet Plateau,for the first time,this paper discusses characteristics of sedimentary development,thickness distribution,geochemistry,reservoir and burial depth of organic-rich shale,and geological conditions for shale gas formation in Qiangtang Basin.There are four sets of marine shale strata in Qiangtang Basin including Upper Triassic Xiaochaka Formation (T3x),Middle Jurassic Buqu Formation (J2b),Xiali Formation (J2x) and Upper Jurassic Suowa Formation (J3s),the sedimentary types of which are mainly bathyal-basin facies,open platform-platform margin slope facies,lagoon and tidal-fiat facies,as well as delta facies.By comparing it with the indicators of gas shale in the main U.S.basins,it was found that the four marine shale formations in Qiangtang Basin constitute a multi-layer distribution of organic-rich shale,featuring a high degree of thickness and low abundance of organic matter,high thermal evolution maturity,many kinds of brittle minerals,an equivalent content of quartz and clay minerals,a high content of feldspar and low porosity,which provide basic conditions for an accumulation of shale gas resources.Xiaochaka Formation shale is widely distributed,with big thickness and the best gas generating indicators.It is the main gas source layer.Xiali Formation shale is of intermediate thickness and coverage area,with relatively good gas generating indicators and moderate gas formation potential.Buqu Formation shale and Suowa Formation shale are of relatively large thickness,and covering a small area,with poor gas generating indicators,and limited gas formation potential.The shale gas geological resources and technically recoverable resources were estimated by using geologic analogy method,and the prospective areas and potentially favorable areas for Mesozoic marine shale gas in Qiangtang Basin are forecast and analyzed.It is relatively favorable in a tectonic setting and indication of oil and gas,shale maturity,sedimentary thickness and gypsum-salt beds,and in terms of mineral association for shale gas accumulation.But the challenge lies in overcoming the harsh natural conditions which contributes to great difficulties in ground engineering and exploration,and high exploration costs.
文摘Conditions for the Formation of oil and gas pools in Tertiary volcanics in the western part of the Huimin sag, Shandong and then (?)stribution have been studied based on the geological, seismic and well-logging information. In this paper, the types and lithofacies of the volcanic rocks in the western part of the Huimin sag are described; the relationship between rocks and electrical properties, the seismic reflection structures, the development and distribution of the volcanic rocks are expounded; and the fourfold role of the volcanic activities in the formation of the oil and gas pools is also dealt with. It is considered by the authors that the volcanic activities were not destructive to the formation of oil and gas pools but a factor favourable to the accumulation of organic matters and their conversion to hydrocarbon. The volcanic rocks might have served as reservoir rocks and cap rocks, or as a synsedimentary anticline. The prerequisites and important factors for the formation of oil and gas pools and their distribution are pointed out in the paper.
基金supported by the National Natural Science Foundation of China(Grant No.41872124,42202175&No.42130803)。
文摘Although carbon isotope reversal and its reasons in shale gas reservoirs have been widely recognized,the application of the reversal is yet to be investigated.A study on high-maturity shale from Wufeng and Longmaxi Formations in the Sichuan Basin not only reveals the relationship between the degree of isotopes inversion and the production capacity(e.g.,estimated ultimate recovery(EUR))of the gas well but also indicates the preservation conditions of shale gas reservoirs.(1)Although there are differences in gas isotopes in different shale gas reservoirs,the isotope fractionation of shale gas is small during the production stage of gas wells,even when the wellbore pressure drops to zero.The main cause of the difference in carbon isotopes and their inversion degree can be the uplift time during the Yanshan period and the formation pressure relief degree of shale gas reservoirs in distinct structural positions.Thus,carbon isotope inversion is a good indicator of shale gas preservation condition and EUR of shale gas wells.(2)The degree of carbon isotope inversion correlates strongly with shale gas content and EUR.The calculation formula of shale-gas recoverable reserves was established using△δ^(13)C(δC_(1)-δC_(2))and EUR.(3)The gas loss rate and total loss amount can be estimated using the dynamic reserves and isotopic difference values of gas wells in various shale gas fields,which also reflects the current methane loss,thereby demonstrating great potential for evaluating global methane loss in shales.
基金This research is supported by the Fundamental Research Funds for the Central Universities(No.15CX05036A,18CX05009A)the National Key Basic Research Program 973 project(No.2015CB251201)+2 种基金It is also partially financed by the National Major S&T Project(No.2016ZX05056004-003)the General Project of Shandong Natural Science Foundation(ZR2020ME090)the National Natural Science Foundation of China(No.51974347)。
文摘Seepage-type gas hydrate accumulation in subsea shallow formations involves complicated thermohydro-solid coupling processes and matching problem between various accumulation elements.Theformation physical properties control local natural gas migration pathway and thus the final reservoircharacteristics of hydrates.In this paper,a novel mixed-flux model for gas hydrate accumulation isestablished and then used to simulate the process of methane gas migration into the shallow stratum toform a hydrate reservoir.The effects of reservoir heterogeneity and gas source conditions on the distribution of pore fluid and hydrate accumulation are examined.The simulation results show thatreservoir heterogeneity is conducive to the retention and lateral migration of CH4 in a hydrate stabilityzone.CH4 can contact more pore water to form a large hydrate reserve,but the formed hydrate is oftendispersed.Low-permeability layers enhance the trapping of CH4 and form a uniform and large hydratesaturation.Besides,gas source conditions have an important impact on the hydrate accumulation inreservoirs.Large gas flux,small pore water flux,continuous gas supply,high content of heavy components in natural gas,and numerous gas source points contribute to large amounts of hydrates generationin a certain time period.The presented work will deepen our understanding of the controls of natural gashydrate systems in subea shallow formations.
基金supported by the Major Project of Chinese National Programs for Fundamental Research and Development 973 Program (No. 2012CB214805)
文摘Many scholars carried out large quantity of researches on oil and gas preservative condi-tions of marine carbonate rocks from the aspects of cap rocks,faults,formation water,hydrodynamic,and tectonism.This article gives dynamic evaluation on oil and gas preservative conditions of marine stratum in Jianghan(江汉) plain of multiphase tectonic disturbance from the view of paleofluid geo-chemistry.The conclusion shows that there mainly existed fluid filling of two periods in the reservoir of Lower-Middle Triassic to Permian.The fluid filled in the earlier period came from Lower Palaeozoic.The interchange of fluid in Lower-Middle Triassic to Permian suggested the oil and gas in Lower Pa-laeozoic had been broken up.The fluid filled in the later period(Lower-Middle Triassic to Permian) came from the same or adjacent strata and lacked anatectic fluidogenous features coming from Palaeozoic.With good preservative conditions of bulk fluid at the time,the fluid of Lower-Middle Triassic to Permian and that of Lower Palaeozoic did not connect with each other.However,the hydrocarbon generation peak of marine source rocks had passed or the paleo-oil and gas reser-voirs had been destroyed at that time and the marine stratum of Palaeozoic to Triassic in the research area did not put out commercial oil and gas flow.
基金supported by Scientific Research Fund of Nanjing Institute of Technology (Grant No.YKJ201339)National Natural Science Foundation of China (Grant Nos.11371189 and 11101190)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘In this paper, we prove the local existence, uniqueness and stability of a supersonic shock for the supersonic isothermal incoming flow past a curved cone. Major difficulties include constructing an appropriate solution and treatincg the Neumann boundary conditions and local stability condition.