期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
In-situ gas contents of a multi-section coal seam in Sydney basin for coal and gas outburst management
1
作者 Zhongbei Li Ting Ren +4 位作者 Dennis Black Ming Qiao Itmam Abedin Jessica Juric Mike Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期34-46,共13页
The gas content is crucial for evaluating coal and gas outburst potential in underground coal mining. This study focuses on investigating the in-situ coal seam gas content and gas sorption capacity in a representative... The gas content is crucial for evaluating coal and gas outburst potential in underground coal mining. This study focuses on investigating the in-situ coal seam gas content and gas sorption capacity in a representative coal seam with multiple sections (A1, A2, and A3) in the Sydney basin, where the CO_(2) composition exceeds 90%. The fast direct desorption method and associated devices were described in detail and employed to measure the in-situ gas components (Q_(1), Q_(2), and Q_(3)) of the coal seam. The results show that in-situ total gas content (Q_(T)) ranges from 9.48 m^(3)/t for the A2 section to 14.80 m^(3)/t for the A3 section, surpassing the Level 2 outburst threshold limit value, thereby necessitating gas drainage measures. Among the gas components, Q_(2) demonstrates the highest contribution to Q_(T), ranging between 55% and 70%. Furthermore, high-pressure isothermal gas sorption experiments were conducted on coal samples from each seam section to explore their gas sorption capacity. The Langmuir model accurately characterizes CO_(2) sorption behavior, with ft coefcients (R^(2)) greater than 0.99. Strong positive correlations are observed between in-situ gas content and Langmuir volume, as well as between residual gas content (Q_(3)) and sorption hysteresis. Notably, the A3 seam section is proved to have a higher outburst propensity due to its higher Q_(1) and Q_(2) gas contents, lower sorption hysteresis, and reduced coal toughness f value. The insights derived from the study can contribute to the development of efective gas management strategies and enhance the safety and efciency of coal mining operations. 展开更多
关键词 In-situ coal seam gas content Direct desorption method gas component Sorption capacity Coal and gas outburst
下载PDF
A rapid and accurate direct measurement method of underground coal seam gas content based on dynamic diffusion theory 被引量:6
2
作者 Yanwei Liu Yang Du +4 位作者 Zhiqiang Li Fajun Zhao Weiqin Zuo Jianping Wei Hani Mitri 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2020年第6期799-810,共12页
Coal seam gas content is frequently measured in quantity during underground coal mining operation and coalbed methane(CBM)exploration as a significant basic parameter.Due to the calculation error of lost gas and resid... Coal seam gas content is frequently measured in quantity during underground coal mining operation and coalbed methane(CBM)exploration as a significant basic parameter.Due to the calculation error of lost gas and residual gas in the direct method,the efficiency and accuracy of the current methods are not inadequate to the large area multi-point measurement of coal seam gas content.This paper firstly deduces a simplified theoretical dynamic model for calculating lost gas based on gas dynamic diffusion theory.Secondly,the effects of various factors on gas dynamic diffusion from coal particle are experimentally studied.And sampling procedure of representative coal particle is improved.Thirdly,a new estimation method of residual gas content based on excess adsorption and competitive adsorption theory is proposed.The results showed that the maximum error of calculating the losing gas content by using the new simplified model is only 4%.Considering the influence of particle size on gas diffusion law,the particle size of the collected coal sample is below 0.25 mm,which improves the measurement speed and reflects the safety representativeness of the sample.The determination time of gas content reduced from 36 to 3 h/piece.Moreover,the absolute error is 0.15–0.50 m^3/t,and the relative error is within 5%.A new engineering method for determining the coal seam gas content is developed according to the above research. 展开更多
关键词 Coal seam gas content Dynamic diffusion model Determination method Lost gas content Desorption characteristics
下载PDF
Influence of Ground Stress on Coal Seam Gas Pressure and Gas Content 被引量:2
3
作者 Xuebo Zhang Zhiwei Jia 《Fluid Dynamics & Materials Processing》 EI 2019年第1期53-61,共9页
The influence of ground stress was quantitatively analyzed on coal seam gas pressure and gas content in this paper.Mining activities in coal mine can result in stress concentration in the coal(rock)body around the min... The influence of ground stress was quantitatively analyzed on coal seam gas pressure and gas content in this paper.Mining activities in coal mine can result in stress concentration in the coal(rock)body around the mining space,but porosity of the coal seam would not change too much.Therefore,gas pressure and gas content in the coal seam are slightly affected.Studies showed that the free gas was gradually transformed into adsorbed gas,and the gas adsorption volume was small,and then gas pressure increases roughly linearly when the porosity decreased because of stress influence.Additionaly,when porosity of coal seam reduced to 40%,the amount of adsorbed gas accounted for no more than 10%of coal seam gas content,and the increase of gas pressure did not exceed 15%of the original gas pressure. 展开更多
关键词 Ground stress coal seam porosity gas pressure gas content stress concentration.
下载PDF
Forward modeling and inversion of the relation model between the gas content of plume and its seismic attribute 被引量:1
4
作者 Canping Li Jiachun You +4 位作者 Yanchun Tan Fengying Chen Yilin Liu Zihao Guo Xinyu Tian 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第5期120-128,共9页
The methane bubble plume attracts interest because it offers direct evidence of seafloor gas leakage and plays an indirect role in the exploration and identification of natural gas hydrate.In this study,based on estab... The methane bubble plume attracts interest because it offers direct evidence of seafloor gas leakage and plays an indirect role in the exploration and identification of natural gas hydrate.In this study,based on established plume models and their migration sections,three amplitude-class attributes were extracted from three formations for the migration sections of five plumes,and the correlation between the gas content and seismic attribute was obtained.As the gas content increases,the amplitude attribute correspondingly increases,and the linear correlation is relatively good.Moreover,correlation coefficients between gas content and amplitude attributes are close to 1.0.By using linear fitting,the relation model between the gas content of the plume and the seismic attribute was obtained.The relation model was subsequently used to invert the gas content from a real databearing plume.Comparison of the gas content section of the plume with the attribute section and real seismic section reveals common distribution characteristics,namely,the color of the section in the lower right corner is dark.If the amplitude value is large in the seismic section of the real plume,the amplitude attribute value is also large in the corresponding attribute section,and the inverted value of the gas content is also large(because gas content and amplitude are linearly correlated),which indicates that the plume bubbles of the section in the lower right corner is intensively distributed.Finally,the obtained gas content section of the plume can reflect the distribution of the plume bubble content more simply and intuitively,from which the distribution law of seafloor bubbles can be deduced,and this lays a foundation for the further estimation of the gas content of the plume and hydrate reserves. 展开更多
关键词 methane plume natural gas hydrate gas content seismic attribute linear fitting
下载PDF
Model Prediction and Optimal Control of Gas Oxygen Content for A Municipal Solid Waste Incineration Process
5
作者 Aijun Yan Tingting Gu 《Instrumentation》 2024年第1期101-111,共11页
In the municipal solid waste incineration process,it is difficult to effectively control the gas oxygen content by setting the air flow according to artificial experience.To address this problem,this paper proposes an... In the municipal solid waste incineration process,it is difficult to effectively control the gas oxygen content by setting the air flow according to artificial experience.To address this problem,this paper proposes an optimization control method of gas oxygen content based on model predictive control.First,a stochastic configuration network is utilized to establish a prediction model of gas oxygen content.Second,an improved differential evolution algorithm that is based on parameter adaptive and t-distribution strategy is employed to address the set value of air flow.Finally,model predictive control is combined with the event triggering strategy to reduce the amount of computation and the controller's frequent actions.The experimental results show that the optimization control method proposed in this paper obtains a smaller degree of fluctuation in the air flow set value,which can ensure the tracking control performance of the gas oxygen content while reducing the amount of calculation. 展开更多
关键词 municipal solid waste incineration gas oxygen content stochastic configuration network model prediction differential evolution
下载PDF
JOURNAL OF NATURAL GAS CHEMISTRY CONTENTS OF VOLUME 18
6
《Journal of Natural Gas Chemistry》 CAS CSCD 2009年第4期I0004-I0007,共4页
关键词 Wang CO JOURNAL OF NATURAL gas CHEMISTRY contentS OF VOLUME 18 CHEN Zhang Li gas
下载PDF
JOURNAL OF NATURAL GAS CHEMISTRY CONTENTS OF VOLUME 19
7
《Journal of Natural Gas Chemistry》 CAS CSCD 2010年第6期669-674,共6页
关键词 CO Wang JOURNAL OF NATURAL gas CHEMISTRY contentS OF VOLUME 19 CHEN gas
下载PDF
JOURNAL OF NATURAL GAS CHEMISTRY CONTENTS OF VOLUME 15
8
《Journal of Natural Gas Chemistry》 CAS CSCD 2006年第4期I0004-I0006,共3页
关键词 CO CO JOURNAL OF NATURAL gas CHEMISTRY contentS OF VOLUME 15 Chen Wang gas
下载PDF
JOURNAL OF NATURAL GAS CHEMISTRY CONTENTS OF VOLUME 17
9
《Journal of Natural Gas Chemistry》 CAS CSCD 2008年第4期I0005-I0008,共4页
关键词 over ZHANG JOURNAL OF NATURAL gas CHEMISTRY contentS OF VOLUME 17 gas
下载PDF
Degassing effect of ultrasonic vibration in molten melt and semi-solid slurry of Al-Si alloys 被引量:6
10
作者 Wu Shusen Liu Longfei +2 位作者 Ma Qianqian Mao Youwu An Ping 《China Foundry》 SCIE CAS 2012年第3期201-206,共6页
In the process of semi-solid slurry preparation with direct ultrasonic vibration (UV) by dipping the horn into the melt, one of the questions is whether the gas content in the melt would be increased or not by the cav... In the process of semi-solid slurry preparation with direct ultrasonic vibration (UV) by dipping the horn into the melt, one of the questions is whether the gas content in the melt would be increased or not by the cavitation effect of ultrasonic vibration. By application of quantitative gas content measurement technique, this paper investigated the effect of the ultrasonic vibration on the gas content of both the melt and the semi-solid slurry of Al-Si alloys, and the variations of the gas contents in two kinds of aluminum alloys, i.e., A356 alloy and Al-20Si-2Cu-1Ni-0.6RE alloy (Al-20Si for short). The results show that ultrasonic vibration has an obvious degassing effect on the molten melt, especially on the semi-solid slurry of Al-Si alloy which is below the liquidus temperature by less than 20 ℃. The ultrasonic degassing efficiency of the A356 alloy decreases with the reduction of the initial gas content in the melt, and it is nearly unchanged for the Al-20Si alloy. The gas content of both alloys decreases when the ultrasonic vibration time is increased. The best vibration time for Al-20Si alloy at the liquid temperature of 710 ℃ and semi-solid temperature of 680 ℃ is 60 s and 90 s, respectively; and the degassing efficiency is 48% and 35%, respectively. The mechanism of ultrasonic degassing effect is discussed. 展开更多
关键词 ultrasonic vibration semi-solid slurry aluminum alloy gas content DEgasSING
下载PDF
An experimental study on microscopic characteristics of gas-bearing sediments under different gas reservoir pressures 被引量:2
11
作者 Zhenqi Guo Tao Liu +3 位作者 Lei Guo Xiuting Su Yan Zhang Sanpeng Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第10期144-151,共8页
Gas-bearing sediments are widely distributed in five continents all over the world.Most of the gases exist in the soil skeleton in the form of discrete large bubbles.The existence of gas-phase may increase or decrease... Gas-bearing sediments are widely distributed in five continents all over the world.Most of the gases exist in the soil skeleton in the form of discrete large bubbles.The existence of gas-phase may increase or decrease the strength of the soil skeleton.So far,bubbles’structural morphology and evolution characteristics in soil skeleton lack research,and the influence of different gas reservoir pressures on bubbles are still unclear.The micro characteristics of bubbles in the same sediment sample were studied using an industrial CT scanning test system to solve these problems.Using the image processing software,the micro variation characteristics of gas-bearing sediments in gas reservoir pressure change are obtained.The results show that the number and volume of bubbles in different equivalent radius ranges will change regularly under different gas reservoir pressure.With the increase of gas reservoir pressure,the number and volume of tiny bubbles decrease.In contrast,the number and volume of large bubbles increase,and the gas content in different positions increases and occupies a dominant position,driving the reduction of pore water and soil skeleton movement. 展开更多
关键词 micro characteristics CT scanning gas content number and volume of bubbles gas reservoir pressure seabed sediments
下载PDF
Evolution and application of in-seam drilling for gas drainage 被引量:13
12
作者 Frank Hungerford Ting Ren Naj Aziz 《International Journal of Mining Science and Technology》 SCIE EI 2013年第4期534-544,共11页
The presence of seam gas in the form of methane or carbon dioxide presents a hazard to underground coal mining operations.In-seam drilling has been undertaken for the past three decades for gas drainage to reduce the ... The presence of seam gas in the form of methane or carbon dioxide presents a hazard to underground coal mining operations.In-seam drilling has been undertaken for the past three decades for gas drainage to reduce the risk of gas outburst and lower the concentrations of seam gas in the underground ventilation.The drilling practices have reflected the standards of the times and have evolved with the development of technology and equipment and the needs to provide a safe mining environment underground.Early practice was to adapt equipment from other felds,with rotary drilling being the only form of drilling available.This form of drainage allowed various levels of gas drainage coverage but with changing emphasis,research and development within the coal industry has created specifc equipment,technology and practices to accurately place in-seam boreholes to provide effcient and effective gas drainage.Research into gas content determination established a standard for the process and safe levels for mining operations to continue.Surveying technology improved from the wire-line,single-shot Eastman survey instruments which was time-dependent on borehole depth to electronic instruments located in the drill string which transmitted accurate survey data to the drilling crew without time delays.This allowed improved directional control and increased drilling rates.Directional drilling technology has now been established as the industry standard to provide effective gas drainage drilling.Exploration was identifed as an additional beneft with directional drilling as it has the ability to provide exploration data from long boreholes.The ability of the technology to provide safe and reliable means to investigate the need for inrush protection and water drainage ahead of mining has been established.Directional drilling technology has now been introduced to the Chinese coal industry for gas drainage through a practice of auditing,design,supply,training and ongoing support.Experienced drilling crews can offer site specifc gas drainage drilling services utilising the latest equipment and technology. 展开更多
关键词 gas outbursts In-seam drilling gas drainage Directional drilling technology gas content determination Geological exploration
下载PDF
CONTENTS
13
《Journal of Natural Gas Chemistry》 CAS CSCD 2005年第4期I0002-I0003,共2页
关键词 CO WANG JOURNAL OF NATURAL gas CHEMISTRY contentS OF VOLUME 14 Li gas
下载PDF
CONTENTS
14
《Journal of Natural Gas Chemistry》 CAS CSCD 2007年第3期M0002-M0004,共3页
关键词 over ZHANG JOURNAL OF NATURAL gas CHEMISTRY contentS OF VOLUME 16 gas
下载PDF
Economic feasibility and efficiency enhancement approaches for in situ upgrading of low-maturity organic-rich shale from an energy consumption ratio perspective
15
作者 LU Shuangfang WANG Jun +5 位作者 LI Wenbiao CAO Yixin CHEN Fangwen LI Jijun XUE Haitao WANG Min 《地学前缘》 EI CAS CSCD 北大核心 2023年第1期281-295,共15页
The technical feasibility of in situ upgrading technology to develop the enormous oil and gas resource potential in low-maturity shale is widely acknowledged.However,because of the large quantities of energy required ... The technical feasibility of in situ upgrading technology to develop the enormous oil and gas resource potential in low-maturity shale is widely acknowledged.However,because of the large quantities of energy required to heat shale,its economic feasibility is still a matter of debate and has yet to be convincingly demonstrated quantitatively.Based on the energy conservation law,the energy acquisition of oil and gas generation and the energy consumption of organic matter cracking,shale heat-absorption,and surrounding rock heat dissipation during in situ heating were evaluated in this study.The energy consumption ratios for different conditions were determined,and the factors that influence them were analyzed.The results show that the energy consumption ratio increases rapidly with increasing total organic carbon(TOC)content.For oil-prone shales,the TOC content corresponding to an energy consumption ratio of 3 is approximately 4.2%.This indicates that shale with a high TOC content can be expected to reduce the project cost through large-scale operation,making the energy consumption ratio after consideration of the project cost greater than 1.In situ heating and upgrading technology can achieve economic benefits.The main methods for improving the economic feasibility by analyzing factors that influence the energy consumption ratio include the following:(1)exploring technologies that efficiently heat shale but reduce the heat dissipation of surrounding rocks,(2)exploring technologies for efficient transformation of organic matter into oil and gas,i.e.,exploring technologies with catalytic effects,or the capability to reduce in situ heating time,and(3)establishing a horizontal well deployment technology that comprehensively considers the energy consumption ratio,time cost,and engineering cost. 展开更多
关键词 shale gas content in situ upgrading energy consumption ratio high-efficiency heating efficient organic matter transformation
下载PDF
Geological controls of shale gas accumulation and enrichment mechanism in Lower Cambrian Niutitang Formation of western Hubei, Middle Yangtze, China 被引量:3
16
作者 Lulu XU Saipeng HUANG +7 位作者 Zaoxue LIU Yaru WEN Xianghui ZHOU Yanlin ZHANG Xiongwei LI Deng WANG Fan LUO Cheng CHEN 《Frontiers of Earth Science》 SCIE CSCD 2021年第2期310-331,共22页
The lower Cambrian Niutitang Formation is of crucial importance for shale gas target reservoirs in western Hubei,China;however,little work has been done in this field,and its shale gas accumulation and enrichment mech... The lower Cambrian Niutitang Formation is of crucial importance for shale gas target reservoirs in western Hubei,China;however,little work has been done in this field,and its shale gas accumulation and enrichment mechanism are still unclear.Based on survey wells,outcrop data,and large numbers of tests,the geological conditions of shale gas accumulation were studied;moreover,the factors that influence the gas content were thoroughly discussed.The results show that the Niutitang Formation(Є1n)can be divided into three sections:the first section(Є_(1)n^(1)),the second section(Є_(1)n^(2)),and the third section(Є1n3).TheЄ_(1)n^(2) is the main shale gas reservoir.The deep shelf facies is the main sedimentary facies and can be divided into three main lithofacies:argillaceous siltstone,carbonaceous shale and carbonaceous siliceous rock.The total organic carbon(TOC)content shows gentle growth trends until bottom of theЄ_(1)n^(2) and then decreases rapidly within theЄ_(1)n^(1),and the TOC content mainly ranges from 2%to 4%horizontally.The calcite and dolomite dissolution pores,clay intergranular pores and organic pores are the main pore types and the micropore types are clearly related to the mineral compositions and the TOC content.Vertically,the gas content is mainly affected by the TOC content.Horizontally,wells with high gas contents are distributed only southeast of the Huangling anticline,and the combination of structural styles,fault and fracture development,and the distribution of the regional unconformity boundary between the upper Sinian Dengying Formation(Z2d)and theЄ_(1)n^(2) are the three most important factors affecting the gas content.The favorable areas must meet the following conditions:a deep shelf environment,the presence of theЄ_(1)n^(1),wide and gentle folds,far from large normal faults that are more than 5 km,moderate thermal evolution,and greater than 500 m burial depth;this includes the block with the YD2–ZD2 wells,and the block with the Y1 and YD4 wells,which are distributed in the southern portion of the Huangling anticline and northern portion of the Xiannvshan fault. 展开更多
关键词 shale gas Niutitang Formation accumulation conditions factors influencing the gas content sedimentary facies
原文传递
Classification of Hydrocarbon-Bearing Fine-Grained Sedimentary Rocks 被引量:3
17
作者 Zaixing Jiang Hongjie Duan +3 位作者 Chao Liang Jing Wu Wenzhao Zhang Jianguo Zhang 《Journal of Earth Science》 SCIE CAS CSCD 2017年第6期963-976,共14页
Fine-grained sedimentary rocks are defined as rocks which mainly compose of fine grains(〈62.5 μm). The detailed studies on these rocks have revealed the need of a more unified, comprehensive and inclusive classifi... Fine-grained sedimentary rocks are defined as rocks which mainly compose of fine grains(〈62.5 μm). The detailed studies on these rocks have revealed the need of a more unified, comprehensive and inclusive classification. The study focuses on fine-grained rocks has turned from the differences of inorganic mineral components to the significance of organic matter and microorganisms. The proposed classification is based on mineral composition, and it is noted that organic matters have been taken as a very important parameter in this classification scheme. Thus, four parameters, the TOC content, silica(quartz plus feldspars), clay minerals and carbonate minerals, are considered to divide the fine-grained sedimentary rocks into eight categories, and the further classification within every category is refined depending on subordinate mineral composition. The nomenclature consists of a root name preceded by a primary adjective. The root names reflect mineral constituent of the rock, including low organic(TOC〈2%), middle organic(2%4%) claystone, siliceous mudstone, limestone, and mixed mudstone. Primary adjectives convey structure and organic content information, including massive or limanited. The lithofacies are closely related to the reservoir storage space, porosity, permeability, hydrocarbon potential and shale oil/gas sweet spot, and are the key factor for the shale oil and gas exploration. The classification helps to systematically and practicably describe variability within fine-grained sedimentary rocks, what's more, it helps to guide the hydrocarbon exploration. 展开更多
关键词 fine-grained sedimentary rocks CLASSIFICATION mineral composition TOC content shale oil and gas.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部