Iran’s removing subsidy from energy carrier in four years ago leads to spike electricity price dramatically. This abrupt change increases the interest on distributed generation (DG) because of its several benefits su...Iran’s removing subsidy from energy carrier in four years ago leads to spike electricity price dramatically. This abrupt change increases the interest on distributed generation (DG) because of its several benefits such as lower electricity generation price. In Iran among all type of DGs, because of wide natural gas network infrastructure and several incentives that government legislated to support combined cooling, heat and power (CCHP) investors, this type of technology is more prevalent in comparison with other technologies. Between existing CCHP technologies, certain economic choices are to be taken into account. For different buildings with different load curves, suitable size and operation of CCHP should be calculated to make the project more feasible. If CCHP does not well suited for a position, then the whole energy efficiency would be plunged significantly. In this paper, a model to find the optimal size and operation of CCHP and auxiliary boiler for any users is proposed by considering an integrated view of electricity and natural gas network using GAMS software. Then this method is applying for a hospital in Tehran as a real case study. Finally, by applying COMFAR III software, useful financial parameters and sensitivity analysis are calculated.展开更多
In order to predict the pressure drop, collection efficiency, velocity, temperature and mole fraction of vapor in an industrial venturi scrubber with water spraying for converter gas cooling, a three-dimensional model...In order to predict the pressure drop, collection efficiency, velocity, temperature and mole fraction of vapor in an industrial venturi scrubber with water spraying for converter gas cooling, a three-dimensional model of heat and mass transfer with phase change is established. The gas flow and liquid droplets are treated as a continuous phase with a Eulerian approach and as a discrete phase with a Lagrangian approach, respectively. The coupled problem of heat, force, and mass transfers between gas flow and liquid droplets is solved by a commercial computational fluid dynamics(CFD) package, FLUENT. The numerical results show that the water injections have an important influence on the distributions of pressure, velocity, temperature, and mole fraction of vapor, especially for the spraying region in the throat. In the spraying region, the pressure drop is higher and the velocity is lower than in other regions due to the gas-droplet drag, while the temperature is lower because the droplet absorbs large amounts of heat from the high temperature gas and the mole fraction of vapor is higher due to the phase change of the liquid droplet. A number of cases with different Water-to-gas volume flow ratios and baffle openings were simulated. The dependence of pressure drop, velocity, temperature, mole fraction of vapor, and collection efficiency on both the water-to-gas volume flow ratio and baffle opening are analyzed. The good agreements between simulation results and experiment data of pressure drop, temperature, and collection efficiency validate the model. The model should facilitate optimization of the venturi scrubber design in order to give better performance with lower pressure drops and higher collection efficiency.展开更多
The performance of a 270 MW (9 × 30 MW) AES Corporation barge mounted gas turbine power plant in Nigeria is evaluated using the heat rate and entropy generation by the components of the plant to characterize the ...The performance of a 270 MW (9 × 30 MW) AES Corporation barge mounted gas turbine power plant in Nigeria is evaluated using the heat rate and entropy generation by the components of the plant to characterize the irreversibility in each component when operating at different loads between 90% and 25%. The power plants have the peculiarity that three of the plants were supplied by three (3) different Original Equipment Manufacturers (OEM);A, B and C. This study is sequel to the fact that the gas turbines were the first independent power plants in the country and after more than fifteen years of operation, it is reasonable to evaluate the performance of the major components. By analyzing the thermodynamic performance of these components, the study demonstrates the utility value of exergy efficiency as an important parameter in the evaluation of major components in a gas power plant. Exergy efficiency is shown to be an important parameter in ranking the power plant components, identifying and quantifying the possible areas of reduction in thermodynamic losses and improvement in efficiencies. A new relationship is derived to demonstrate the correlation between the exergy efficiency and the heat rate of a 30 MW gas power plant. The prediction of the derived relationship correlates well with the observed operational performance of the 30 MW power plants. The combustion chamber in each of the plants provides the maximum exergy destruction during operation. Its exergy efficiency is shown to exhibit good correlation with its energy efficiency and the plant rational exergy. The implication is that from an operational and component selection viewpoint in the specifications of a gas power plant, knowledge of the Heat Rate which is usually provided by the OEM is adequate to make a reasonable inference on the performance of some critical components of the plant.展开更多
The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the po...The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings.展开更多
Preliminary investigation shows that air sourced type heat pumps by energy efficiency are competitive with gas boilers having 93% of coefficient of performance (COP) if heat pumps are used in climatic zones, having ...Preliminary investigation shows that air sourced type heat pumps by energy efficiency are competitive with gas boilers having 93% of coefficient of performance (COP) if heat pumps are used in climatic zones, having outside air temperature higher than (-3 ℃ to -5 ℃). But, in such conditions the heat pump's evaporator is covered by ice crust, which cuts off the flow of outside air-heat source through the evaporator of heat pump. For avoiding stating problems it is recommended to use as heat source a mixture of waste warm gases. In this article a high efficiency heating-cooling system is developed, consisting of warm gases mixture sourced heat pump, heating boiler operating simultaneously with heat pump and solar air heater. The heating demand of the served house is shared between boiler and heat pump. Instead of outside air the warm gases mixture enters into evaporator of heat pump. A new construction of heat exchanger was developed. The article presents the structure and principle of operation, as well as the method for optimization and design of suggested system. Analysis proved high energy efficiency and cost effectiveness of the new system.展开更多
Fuel poverty is most prevalent in North East England with 14.4%of fuel poor households in Newcastle upon Tyne.The aim of this paper was to identify a grid connected renewable energy system coupled with natural gas rec...Fuel poverty is most prevalent in North East England with 14.4%of fuel poor households in Newcastle upon Tyne.The aim of this paper was to identify a grid connected renewable energy system coupled with natural gas reciprocating combined heat and power unit,that is cost-effective and technically feasible with a potential to generate a profit from selling energy excess to the grid to help alleviate fuel poverty.The system was also aimed at low carbon emissions.Fourteen models were designed and optimized with the aid of the HOMER Pro software.Models were compared with respect to their economic,technical,and environmental performance.A solution was proposed where restrictions were placed on the size of renewable energy components.This configuration consists of 150 kW CHP,300 kW PV cells,and 30 kW wind turbines.The renewable fraction is 5.10%and the system yields a carbon saving of 7.9%in comparison with conventional systems.The initial capital investment is$1.24 million which enables the system to have grid sales of 582689 kWh/a.A conservative calculation determined that 40%of the sales can be used to reduce the energy cost of fuel poor households by$706 per annum.This solution has the potential to eliminate fuel poverty at the site analyzed.展开更多
Helium-xenon cooled microreactors are a vital technological solution for portable nuclear reactor power sources.To exam-ine the convective heat transfer behavior of helium-xenon gas mixtures in a core environment,nume...Helium-xenon cooled microreactors are a vital technological solution for portable nuclear reactor power sources.To exam-ine the convective heat transfer behavior of helium-xenon gas mixtures in a core environment,numerical simulations are conducted on a cylindrical coolant channel and its surrounding solid regions.Validated numerical methods are used to determine the effect and mechanisms of power and its distribution,inlet temperature and velocity,and outlet pressure on the distribution and change trend of the axial Nusselt number.Furthermore,a theoretical framework that can describe the effect of power variation on the evolution of the thermal boundary layer is employed to formulate an axial distribution cor-relation for the Nusselt number of the coolant channel,under the assumption of a cosine distribution for the axial power.Based on the simulation results,the correlation coefficients are determined,and a semi-empirical relationship is identified under the corresponding operating conditions.The correlation derived in this study is consistent with the simulations,with an average relative error of 5.3%under the operating conditions.Finally,to improve the accuracy of the predictions near the entrance,a segmented correlation is developed by combining the Kays correlation with the aforementioned correlation.The new correlation reduces the average relative error to 2.9%and maintains satisfactory accuracy throughout the entire axial range of the channel,thereby demonstrating its applicability to turbulent heat transfer calculations for helium-xenon gas mixtures within the core environment.These findings provide valuable insights into the convective heat transfer behavior of a helium-xenon gas mixture in a core environment.展开更多
It’s well known that the performance of a gas turbine (efficiency, heat rate and power generated) is largely dependent on mass flow rate of air, inlet air temperature and turbine inlet temperature (TIT). As turbine i...It’s well known that the performance of a gas turbine (efficiency, heat rate and power generated) is largely dependent on mass flow rate of air, inlet air temperature and turbine inlet temperature (TIT). As turbine inlet temperature is dependent on quantity of burned fuel so that this factor is dropped out from this paper. It’s also known that gas turbines are constant volume machines i.e. at a given shaft speed they always move the same volume of air, but the power out-put of a turbine depends on the flow of mass through it. This is precisely the reason why on hot days, when air is less dense, power output falls off. A rise of one degree Centigrade temperature of inlet air decreases the power output by 1% and at the same time heat rate of the turbine also goes up. This is a matter of great concern to power producers. Many techniques have been developed to cool the inlet air to gas turbine. Some of these techniques to decrease the inlet air temperature are discussed here. The evaporative cooling technique is taken as a case study in this paper. A comparative studying is carried out between a unit using this technique and the same unit when the evaporative cooler is idle. The results advert to an increase in power output by 11.07% and a decrease in heat rate by approximately 4% when inlet air temperature drops from 50°C to 26°C.展开更多
Electric furnace short process steelmaking is one of the most important steelmaking methods in the world today, and the waste heat recovery potential of electric furnace flue gas is huge.?The research on the recovery ...Electric furnace short process steelmaking is one of the most important steelmaking methods in the world today, and the waste heat recovery potential of electric furnace flue gas is huge.?The research on the recovery of electric furnace flue gas waste heat is of great significance. In order to make better use of this part of the heat,?in this paper, a compound cycle of nitrogen Brayton cycle as a first-order cycle and toluene transcritical Rankine cycle as a second-order cycle is proposed to recover waste heat from furnace flue gas in steelmaking process for power generation. A mathematical model was established with the net output power as the objective function and the initial expansion pressure, the final expansion pressure, the initial expansion temperature and the initial pressure of the second cycle as the independent variables. The effect of multivariate on the net output power of the waste heat power generation cycle is studied, and then, the optimal parameters of the compound cycle are determined. The results show that under the general electric furnace steelmaking process, the power generation efficiency of this new cycle can be increased by 21.02% compared with the conventional cycle.展开更多
This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion p...This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion process in heat & power plants, cogeneration units, etc., which burn the gaseous fuel, primarily natural gas, or methane, biogas, geothermal gas, or other gaseous mixtures containing hydrogen. The solution proposes a more effective and non-traditional use of gaseous fuel for heating, the flue gases of which are processed in order to extract additional utilisable heat, with potential elimination of CO2 from them. Deploying of the heating plant in an island regime (OFF-GRID) enables definition of the benefits brought by the 3 years of operational experience and presents visions for the future offering the possibility to utilise the support energy services at the municipal as well as regional level.展开更多
Gas turbine (GT) power plants operating in arid climates suffer a decrease in output power during the hot summer months because of the high specific volume of air drawn by the compressor. Cooling the air intake to the...Gas turbine (GT) power plants operating in arid climates suffer a decrease in output power during the hot summer months because of the high specific volume of air drawn by the compressor. Cooling the air intake to the compressor has been widely used to mitigate this shortcoming. Energy and exergy analysis of a GT Brayton cycle coupled to a refrigeration air cooling unit shows a promise for increasing the output power with a little decrease in thermal efficiency. A thermo-economics algorithm is developed to estimate the economic feasibility of the cooling system. The analysis is applied to an open cycle, HITACHI-FS7001B GT plant at the industrial city of Yanbu (Latitude 24o 05” N and longitude 38o E) by the Red Sea in the Kingdom of Saudi Arabia. Result show that the enhancement in output power depends on the degree of chilling the air intake to the compressor (a 12 - 22 K decrease is achieved). For this case study, maximum power gain ratio (PGR) is 15.46% (average of 12.25%), at an insignificant decrease in thermal efficiency. The second law analysis show that the exergetic power gain ratio drops to an average 8.5%. The cost of adding the air cooling system is also investigated and a cost function is derived that incorporates time-dependent meteorological data, operation characteristics of the GT and the air intake cooling system and other relevant parameters such as interest rate, lifetime, and operation and maintenance costs. The profit of adding the air cooling system is calculated for different electricity tariff.展开更多
Steam mining method was injecting hot steam into the borehole to heat the hydrate strata at the same time of depressurization mining,which could promote further decomposition and expand mining areas of gas hydrate. St...Steam mining method was injecting hot steam into the borehole to heat the hydrate strata at the same time of depressurization mining,which could promote further decomposition and expand mining areas of gas hydrate. Steam heat calculation would provide the basis for the design of heating device and the choice of the field test parameters. There were piping heat loss in the process of mining. The heat transfer of steam flowing in the pipe was steady,so the heat loss could be obtained easily by formula calculation. The power of stratum heating should be determined by numerical simulation for the process of heating was dynamic and the equations were usually nonlinear. The selected mining conditions were 500-millimeter mining radius,10 centigrade mining temperature and 180 centigrade steam temperature. Heat loss and best heating power,obtained by formula calculation and numerical simulation,were 21. 35 W/m and 20 kW.展开更多
The development of simulation model and benchmark work have expanded in the past decade and many models and soft ware are introduced. The leading software "Hearts’ developed by Prof Inoue[1] and several other ha...The development of simulation model and benchmark work have expanded in the past decade and many models and soft ware are introduced. The leading software "Hearts’ developed by Prof Inoue[1] and several other have proved the effectiveness as the pre-production simulation work at many part of heat treatment processes[2-10]. Although, numerous other models and simulation studies dealt with many fundamental factors are reported at many conferences except very few models have not completed three dimensional computation methods, or lack of validation work to evaluate their tools exactly. In this paper, several distortion case studies will be introduced and the needs of fundamental study of distortion and internationally collaborative program on model evaluation and construction of materials database are proposed.展开更多
The performance of a patented water pumping model with steam-air power was presented, which operates automatically by direct contact cooling method. The main objective was to study feasibility of a pumping model for u...The performance of a patented water pumping model with steam-air power was presented, which operates automatically by direct contact cooling method. The main objective was to study feasibility of a pumping model for underground water. In this model, a heater installed within the heat tank represented sources of waste heat as energy input for finding appropriate conditions of the 10 L pump model. The system operation had five stages: heating, pumping, vapor flow, cooling, and water suction. The overall water heads of 3, 4.5, 6 and 7.5 m were tested. At the same time, it was found that the pump with 50% air volume is sufficient for pumping water to a desired level. In the experiment, the temperatures in the heating and pumping stages were 100-103 ℃and 80-90 ℃, respectively. The pressure in the pumping stage was 12-18 kPa, and the pressure in the suction stage was about-80 kPa, sufficient for the best performance. It could pump 170 L of water at a 2 m suction head, 120 L at a 3.5 m suction head, 100 L at a 5 m suction head, and 65 L at a 6.5 m suction head in 2 h. A mathematical model for larger pumps was also presented, which operates nearly the same as the present system. Economic analysis of the 10 L pump was also included.展开更多
We have developed a loop thermosyphon for cooling electronic devices. The cooling performance of a thermosyphon deteriorates with an increasing amount of non-condensable gas (NCG). Design of a thermosyphon must consid...We have developed a loop thermosyphon for cooling electronic devices. The cooling performance of a thermosyphon deteriorates with an increasing amount of non-condensable gas (NCG). Design of a thermosyphon must consider NCG to provide guaranteed performance for a long time. In this study, the heat transfer performance of a thermosyphon was measured while changing the amount of NCG. The resultant performances were expressed as approximations. These approximations enabled us to predict the total thermal resistance of the thermosyphon by the amount of NCG and input heating. Then, using the known leakage in the thermosyphon and the amount of dissolved NCG in the water, we can predict the amount of NCG and the total thermal resistance of the thermosyphon after ten years. Although there is a slight leakage in the thermosyphon, we are able to design a thermosyphon with a guaranteed level of cooling performance for a long time using the proposed design method.展开更多
Combined cooling and power(CCP)system driven by low-grade heat is promising for improving energy efficiency.This work proposes a CCP system that integrates a regenerative organic Rankine cycle(RORC)and an absorption c...Combined cooling and power(CCP)system driven by low-grade heat is promising for improving energy efficiency.This work proposes a CCP system that integrates a regenerative organic Rankine cycle(RORC)and an absorption chiller on both driving and cooling fluid sides.The system is modeled by using the heat current method to fully consider nonlinear heat transfer and heat-work conversion constraints and resolve its behavior accurately.The off-design system simulation is performed next,showing that the fluid inlet temperatures and flow rates of cooling water as well as RORC working fluid strongly affect system performance.The off-design operation even becomes infeasible when parameters deviate from nominal values largely due to limited heat transfer capability of components,highlighting the importance of considering heat transfer constraints via heat current method.Design optimization aiming to minimize the total thermal conductance is also conducted.RORC efficiency increases by 7.9%and decreases by 12.4%after optimization,with the hot fluid inlet temperature increase from 373.15 to 403.15 K and mass flow rate ranges from 10 to 30 kg/s,emphasizing the necessity of balancing system cost and performance.展开更多
The complementary of biomass and solar energy in combined cooling,heating and power(CCHP)system provides an efficient solution to address the energy crisis and environmental pollutants.This work aims to propose a mult...The complementary of biomass and solar energy in combined cooling,heating and power(CCHP)system provides an efficient solution to address the energy crisis and environmental pollutants.This work aims to propose a multi-objective optimization model based on the life cycle assessment(LCA)method for the optimal design of hybrid solar and biomass system.The life-cycle process of the poly-generation system is divided into six phases to analyze energy consumption and greenhouse gas emissions.The comprehensive performances of the hybrid system are optimized by incorporating the evaluation criteria,including environmental impact in the whole life cycle,renewable energy contribution and economic benefit.The non-dominated sorting genetic algorithmⅡ(NSGA-Ⅱ)with the technique for order preference by similarity to ideal solution(TOPSIS)method is employed to search the Pareto frontier result and thereby achieve optimal performance.The developed optimization methodology is used for a case study in an industrial park.The results indicate that the best performance from the optimized hybrid system is reached with the environmental impact load reduction rate(EILRR)of 46.03%,renewable energy contribution proportion(RECP)of 92.73%and annual total cost saving rate(ATCSR)of35.75%,respectively.By comparing pollutant-eq emissions of different stages,the operation phase emits the largest pollutant followed by the phase of raw material acquisition.Overall,this study reveals that the proposed multi-objective optimization model integrated with LCA method delivers an alternative path for the design and optimization of more sustainable CCHP system.展开更多
In hot and arid regions like the Saharan area,effective methods for cooling and humidifying intake air are essential.This study explores the utilization of a water trickle cooler as a promising solution to meet this o...In hot and arid regions like the Saharan area,effective methods for cooling and humidifying intake air are essential.This study explores the utilization of a water trickle cooler as a promising solution to meet this objective.In particular,the HASSI MESSAOUD area is considered as a testbed.The water trickle cooler is chosen for its adaptability to arid conditions.Modeling results demonstrate its effectiveness in conditioning air before it enters the compressor.The cooling system achieves a significant temperature reduction of 6 to 8 degrees Celsius,enhancing mass flow rate dynamics by 3 percent compared to standard cases without cooling.Moreover,the cooling system contributes to a remarkable 10 percent reduction in power consumption of gas turbines and a notable 10 percent increase in turbine efficiency.These findings highlight the potential of water trickle coolers in improving the performance and efficiency of gas turbine systems in hot and dry climates.展开更多
To improve the heat dissipation of high-power light-emitting diodes (LEDs), a cooling system with a fan is proposed. In the experiment, the LEDs array of 18 W composed of 6 LEDs of 3 W is used and the room temperature...To improve the heat dissipation of high-power light-emitting diodes (LEDs), a cooling system with a fan is proposed. In the experiment, the LEDs array of 18 W composed of 6 LEDs of 3 W is used and the room temperature is 26oC. Results show that the temperature of the substrate of LEDs reaches 62oC without the fan, however, it reaches only 32oC when the best cooling condition appears. The temperature of the LEDs decreases by 30oC since the heat produced by LEDs is transferred rapidly by the fan. The experiment demonstrates that the cooling system with the fan has good performance.展开更多
文摘Iran’s removing subsidy from energy carrier in four years ago leads to spike electricity price dramatically. This abrupt change increases the interest on distributed generation (DG) because of its several benefits such as lower electricity generation price. In Iran among all type of DGs, because of wide natural gas network infrastructure and several incentives that government legislated to support combined cooling, heat and power (CCHP) investors, this type of technology is more prevalent in comparison with other technologies. Between existing CCHP technologies, certain economic choices are to be taken into account. For different buildings with different load curves, suitable size and operation of CCHP should be calculated to make the project more feasible. If CCHP does not well suited for a position, then the whole energy efficiency would be plunged significantly. In this paper, a model to find the optimal size and operation of CCHP and auxiliary boiler for any users is proposed by considering an integrated view of electricity and natural gas network using GAMS software. Then this method is applying for a hospital in Tehran as a real case study. Finally, by applying COMFAR III software, useful financial parameters and sensitivity analysis are calculated.
基金supported by Beijing Novel Program, China (Grant No. 2008B16)
文摘In order to predict the pressure drop, collection efficiency, velocity, temperature and mole fraction of vapor in an industrial venturi scrubber with water spraying for converter gas cooling, a three-dimensional model of heat and mass transfer with phase change is established. The gas flow and liquid droplets are treated as a continuous phase with a Eulerian approach and as a discrete phase with a Lagrangian approach, respectively. The coupled problem of heat, force, and mass transfers between gas flow and liquid droplets is solved by a commercial computational fluid dynamics(CFD) package, FLUENT. The numerical results show that the water injections have an important influence on the distributions of pressure, velocity, temperature, and mole fraction of vapor, especially for the spraying region in the throat. In the spraying region, the pressure drop is higher and the velocity is lower than in other regions due to the gas-droplet drag, while the temperature is lower because the droplet absorbs large amounts of heat from the high temperature gas and the mole fraction of vapor is higher due to the phase change of the liquid droplet. A number of cases with different Water-to-gas volume flow ratios and baffle openings were simulated. The dependence of pressure drop, velocity, temperature, mole fraction of vapor, and collection efficiency on both the water-to-gas volume flow ratio and baffle opening are analyzed. The good agreements between simulation results and experiment data of pressure drop, temperature, and collection efficiency validate the model. The model should facilitate optimization of the venturi scrubber design in order to give better performance with lower pressure drops and higher collection efficiency.
基金supported by Major International(Regional)Joint Research Project of the National Natural Science Foundation of China(61320106011)National High Technology Research and Development Program of China(863 Program)(2014AA052802)National Natural Science Foundation of China(61573224)
文摘The performance of a 270 MW (9 × 30 MW) AES Corporation barge mounted gas turbine power plant in Nigeria is evaluated using the heat rate and entropy generation by the components of the plant to characterize the irreversibility in each component when operating at different loads between 90% and 25%. The power plants have the peculiarity that three of the plants were supplied by three (3) different Original Equipment Manufacturers (OEM);A, B and C. This study is sequel to the fact that the gas turbines were the first independent power plants in the country and after more than fifteen years of operation, it is reasonable to evaluate the performance of the major components. By analyzing the thermodynamic performance of these components, the study demonstrates the utility value of exergy efficiency as an important parameter in the evaluation of major components in a gas power plant. Exergy efficiency is shown to be an important parameter in ranking the power plant components, identifying and quantifying the possible areas of reduction in thermodynamic losses and improvement in efficiencies. A new relationship is derived to demonstrate the correlation between the exergy efficiency and the heat rate of a 30 MW gas power plant. The prediction of the derived relationship correlates well with the observed operational performance of the 30 MW power plants. The combustion chamber in each of the plants provides the maximum exergy destruction during operation. Its exergy efficiency is shown to exhibit good correlation with its energy efficiency and the plant rational exergy. The implication is that from an operational and component selection viewpoint in the specifications of a gas power plant, knowledge of the Heat Rate which is usually provided by the OEM is adequate to make a reasonable inference on the performance of some critical components of the plant.
基金This work was partially supported by the Brook Byers Institute for Sustainable Systems, the Hightower Chair, Georgia Research Alliance, and grants (083604, 1441208) from the US National Science Foundation Program for Emerging Frontiers in Research and Innovation (EFRI).
文摘The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings.
文摘Preliminary investigation shows that air sourced type heat pumps by energy efficiency are competitive with gas boilers having 93% of coefficient of performance (COP) if heat pumps are used in climatic zones, having outside air temperature higher than (-3 ℃ to -5 ℃). But, in such conditions the heat pump's evaporator is covered by ice crust, which cuts off the flow of outside air-heat source through the evaporator of heat pump. For avoiding stating problems it is recommended to use as heat source a mixture of waste warm gases. In this article a high efficiency heating-cooling system is developed, consisting of warm gases mixture sourced heat pump, heating boiler operating simultaneously with heat pump and solar air heater. The heating demand of the served house is shared between boiler and heat pump. Instead of outside air the warm gases mixture enters into evaporator of heat pump. A new construction of heat exchanger was developed. The article presents the structure and principle of operation, as well as the method for optimization and design of suggested system. Analysis proved high energy efficiency and cost effectiveness of the new system.
文摘Fuel poverty is most prevalent in North East England with 14.4%of fuel poor households in Newcastle upon Tyne.The aim of this paper was to identify a grid connected renewable energy system coupled with natural gas reciprocating combined heat and power unit,that is cost-effective and technically feasible with a potential to generate a profit from selling energy excess to the grid to help alleviate fuel poverty.The system was also aimed at low carbon emissions.Fourteen models were designed and optimized with the aid of the HOMER Pro software.Models were compared with respect to their economic,technical,and environmental performance.A solution was proposed where restrictions were placed on the size of renewable energy components.This configuration consists of 150 kW CHP,300 kW PV cells,and 30 kW wind turbines.The renewable fraction is 5.10%and the system yields a carbon saving of 7.9%in comparison with conventional systems.The initial capital investment is$1.24 million which enables the system to have grid sales of 582689 kWh/a.A conservative calculation determined that 40%of the sales can be used to reduce the energy cost of fuel poor households by$706 per annum.This solution has the potential to eliminate fuel poverty at the site analyzed.
基金The work was supported by the National Key R&D Program of China(No.2020YFB1901900)the National Natural Science Foundation of China(No.12275175)+2 种基金the Special Fund for Strengthening Industry of Shanghai(No.GYQJ-2018-2-02)the Shanghai Rising Star Program(No.21QA1404200)the Ling Chuang Research Project of the China National Nuclear Corporation.
文摘Helium-xenon cooled microreactors are a vital technological solution for portable nuclear reactor power sources.To exam-ine the convective heat transfer behavior of helium-xenon gas mixtures in a core environment,numerical simulations are conducted on a cylindrical coolant channel and its surrounding solid regions.Validated numerical methods are used to determine the effect and mechanisms of power and its distribution,inlet temperature and velocity,and outlet pressure on the distribution and change trend of the axial Nusselt number.Furthermore,a theoretical framework that can describe the effect of power variation on the evolution of the thermal boundary layer is employed to formulate an axial distribution cor-relation for the Nusselt number of the coolant channel,under the assumption of a cosine distribution for the axial power.Based on the simulation results,the correlation coefficients are determined,and a semi-empirical relationship is identified under the corresponding operating conditions.The correlation derived in this study is consistent with the simulations,with an average relative error of 5.3%under the operating conditions.Finally,to improve the accuracy of the predictions near the entrance,a segmented correlation is developed by combining the Kays correlation with the aforementioned correlation.The new correlation reduces the average relative error to 2.9%and maintains satisfactory accuracy throughout the entire axial range of the channel,thereby demonstrating its applicability to turbulent heat transfer calculations for helium-xenon gas mixtures within the core environment.These findings provide valuable insights into the convective heat transfer behavior of a helium-xenon gas mixture in a core environment.
文摘It’s well known that the performance of a gas turbine (efficiency, heat rate and power generated) is largely dependent on mass flow rate of air, inlet air temperature and turbine inlet temperature (TIT). As turbine inlet temperature is dependent on quantity of burned fuel so that this factor is dropped out from this paper. It’s also known that gas turbines are constant volume machines i.e. at a given shaft speed they always move the same volume of air, but the power out-put of a turbine depends on the flow of mass through it. This is precisely the reason why on hot days, when air is less dense, power output falls off. A rise of one degree Centigrade temperature of inlet air decreases the power output by 1% and at the same time heat rate of the turbine also goes up. This is a matter of great concern to power producers. Many techniques have been developed to cool the inlet air to gas turbine. Some of these techniques to decrease the inlet air temperature are discussed here. The evaporative cooling technique is taken as a case study in this paper. A comparative studying is carried out between a unit using this technique and the same unit when the evaporative cooler is idle. The results advert to an increase in power output by 11.07% and a decrease in heat rate by approximately 4% when inlet air temperature drops from 50°C to 26°C.
文摘Electric furnace short process steelmaking is one of the most important steelmaking methods in the world today, and the waste heat recovery potential of electric furnace flue gas is huge.?The research on the recovery of electric furnace flue gas waste heat is of great significance. In order to make better use of this part of the heat,?in this paper, a compound cycle of nitrogen Brayton cycle as a first-order cycle and toluene transcritical Rankine cycle as a second-order cycle is proposed to recover waste heat from furnace flue gas in steelmaking process for power generation. A mathematical model was established with the net output power as the objective function and the initial expansion pressure, the final expansion pressure, the initial expansion temperature and the initial pressure of the second cycle as the independent variables. The effect of multivariate on the net output power of the waste heat power generation cycle is studied, and then, the optimal parameters of the compound cycle are determined. The results show that under the general electric furnace steelmaking process, the power generation efficiency of this new cycle can be increased by 21.02% compared with the conventional cycle.
文摘This article is focused on technical and economic evaluation of more than 6-years experiences of operating the Waste Heat Recovery technology—the manner and system of flue gas processing generated in the combustion process in heat & power plants, cogeneration units, etc., which burn the gaseous fuel, primarily natural gas, or methane, biogas, geothermal gas, or other gaseous mixtures containing hydrogen. The solution proposes a more effective and non-traditional use of gaseous fuel for heating, the flue gases of which are processed in order to extract additional utilisable heat, with potential elimination of CO2 from them. Deploying of the heating plant in an island regime (OFF-GRID) enables definition of the benefits brought by the 3 years of operational experience and presents visions for the future offering the possibility to utilise the support energy services at the municipal as well as regional level.
文摘Gas turbine (GT) power plants operating in arid climates suffer a decrease in output power during the hot summer months because of the high specific volume of air drawn by the compressor. Cooling the air intake to the compressor has been widely used to mitigate this shortcoming. Energy and exergy analysis of a GT Brayton cycle coupled to a refrigeration air cooling unit shows a promise for increasing the output power with a little decrease in thermal efficiency. A thermo-economics algorithm is developed to estimate the economic feasibility of the cooling system. The analysis is applied to an open cycle, HITACHI-FS7001B GT plant at the industrial city of Yanbu (Latitude 24o 05” N and longitude 38o E) by the Red Sea in the Kingdom of Saudi Arabia. Result show that the enhancement in output power depends on the degree of chilling the air intake to the compressor (a 12 - 22 K decrease is achieved). For this case study, maximum power gain ratio (PGR) is 15.46% (average of 12.25%), at an insignificant decrease in thermal efficiency. The second law analysis show that the exergetic power gain ratio drops to an average 8.5%. The cost of adding the air cooling system is also investigated and a cost function is derived that incorporates time-dependent meteorological data, operation characteristics of the GT and the air intake cooling system and other relevant parameters such as interest rate, lifetime, and operation and maintenance costs. The profit of adding the air cooling system is calculated for different electricity tariff.
基金Supported by project of China Geological Surrey(No.GZHL20110326)
文摘Steam mining method was injecting hot steam into the borehole to heat the hydrate strata at the same time of depressurization mining,which could promote further decomposition and expand mining areas of gas hydrate. Steam heat calculation would provide the basis for the design of heating device and the choice of the field test parameters. There were piping heat loss in the process of mining. The heat transfer of steam flowing in the pipe was steady,so the heat loss could be obtained easily by formula calculation. The power of stratum heating should be determined by numerical simulation for the process of heating was dynamic and the equations were usually nonlinear. The selected mining conditions were 500-millimeter mining radius,10 centigrade mining temperature and 180 centigrade steam temperature. Heat loss and best heating power,obtained by formula calculation and numerical simulation,were 21. 35 W/m and 20 kW.
文摘The development of simulation model and benchmark work have expanded in the past decade and many models and soft ware are introduced. The leading software "Hearts’ developed by Prof Inoue[1] and several other have proved the effectiveness as the pre-production simulation work at many part of heat treatment processes[2-10]. Although, numerous other models and simulation studies dealt with many fundamental factors are reported at many conferences except very few models have not completed three dimensional computation methods, or lack of validation work to evaluate their tools exactly. In this paper, several distortion case studies will be introduced and the needs of fundamental study of distortion and internationally collaborative program on model evaluation and construction of materials database are proposed.
基金the financial support provided by National Research Council of Thailand and the Energy Technology Division, School of Energy Environment and Materials, King Mongkut’s University of Technology Thonburisupported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission
文摘The performance of a patented water pumping model with steam-air power was presented, which operates automatically by direct contact cooling method. The main objective was to study feasibility of a pumping model for underground water. In this model, a heater installed within the heat tank represented sources of waste heat as energy input for finding appropriate conditions of the 10 L pump model. The system operation had five stages: heating, pumping, vapor flow, cooling, and water suction. The overall water heads of 3, 4.5, 6 and 7.5 m were tested. At the same time, it was found that the pump with 50% air volume is sufficient for pumping water to a desired level. In the experiment, the temperatures in the heating and pumping stages were 100-103 ℃and 80-90 ℃, respectively. The pressure in the pumping stage was 12-18 kPa, and the pressure in the suction stage was about-80 kPa, sufficient for the best performance. It could pump 170 L of water at a 2 m suction head, 120 L at a 3.5 m suction head, 100 L at a 5 m suction head, and 65 L at a 6.5 m suction head in 2 h. A mathematical model for larger pumps was also presented, which operates nearly the same as the present system. Economic analysis of the 10 L pump was also included.
文摘We have developed a loop thermosyphon for cooling electronic devices. The cooling performance of a thermosyphon deteriorates with an increasing amount of non-condensable gas (NCG). Design of a thermosyphon must consider NCG to provide guaranteed performance for a long time. In this study, the heat transfer performance of a thermosyphon was measured while changing the amount of NCG. The resultant performances were expressed as approximations. These approximations enabled us to predict the total thermal resistance of the thermosyphon by the amount of NCG and input heating. Then, using the known leakage in the thermosyphon and the amount of dissolved NCG in the water, we can predict the amount of NCG and the total thermal resistance of the thermosyphon after ten years. Although there is a slight leakage in the thermosyphon, we are able to design a thermosyphon with a guaranteed level of cooling performance for a long time using the proposed design method.
基金supported by National Natural Science Foundation of China(Grant No.52125604)。
文摘Combined cooling and power(CCP)system driven by low-grade heat is promising for improving energy efficiency.This work proposes a CCP system that integrates a regenerative organic Rankine cycle(RORC)and an absorption chiller on both driving and cooling fluid sides.The system is modeled by using the heat current method to fully consider nonlinear heat transfer and heat-work conversion constraints and resolve its behavior accurately.The off-design system simulation is performed next,showing that the fluid inlet temperatures and flow rates of cooling water as well as RORC working fluid strongly affect system performance.The off-design operation even becomes infeasible when parameters deviate from nominal values largely due to limited heat transfer capability of components,highlighting the importance of considering heat transfer constraints via heat current method.Design optimization aiming to minimize the total thermal conductance is also conducted.RORC efficiency increases by 7.9%and decreases by 12.4%after optimization,with the hot fluid inlet temperature increase from 373.15 to 403.15 K and mass flow rate ranges from 10 to 30 kg/s,emphasizing the necessity of balancing system cost and performance.
基金supported by the National Natural Science Foundation of China(Grant No.51976164)。
文摘The complementary of biomass and solar energy in combined cooling,heating and power(CCHP)system provides an efficient solution to address the energy crisis and environmental pollutants.This work aims to propose a multi-objective optimization model based on the life cycle assessment(LCA)method for the optimal design of hybrid solar and biomass system.The life-cycle process of the poly-generation system is divided into six phases to analyze energy consumption and greenhouse gas emissions.The comprehensive performances of the hybrid system are optimized by incorporating the evaluation criteria,including environmental impact in the whole life cycle,renewable energy contribution and economic benefit.The non-dominated sorting genetic algorithmⅡ(NSGA-Ⅱ)with the technique for order preference by similarity to ideal solution(TOPSIS)method is employed to search the Pareto frontier result and thereby achieve optimal performance.The developed optimization methodology is used for a case study in an industrial park.The results indicate that the best performance from the optimized hybrid system is reached with the environmental impact load reduction rate(EILRR)of 46.03%,renewable energy contribution proportion(RECP)of 92.73%and annual total cost saving rate(ATCSR)of35.75%,respectively.By comparing pollutant-eq emissions of different stages,the operation phase emits the largest pollutant followed by the phase of raw material acquisition.Overall,this study reveals that the proposed multi-objective optimization model integrated with LCA method delivers an alternative path for the design and optimization of more sustainable CCHP system.
文摘In hot and arid regions like the Saharan area,effective methods for cooling and humidifying intake air are essential.This study explores the utilization of a water trickle cooler as a promising solution to meet this objective.In particular,the HASSI MESSAOUD area is considered as a testbed.The water trickle cooler is chosen for its adaptability to arid conditions.Modeling results demonstrate its effectiveness in conditioning air before it enters the compressor.The cooling system achieves a significant temperature reduction of 6 to 8 degrees Celsius,enhancing mass flow rate dynamics by 3 percent compared to standard cases without cooling.Moreover,the cooling system contributes to a remarkable 10 percent reduction in power consumption of gas turbines and a notable 10 percent increase in turbine efficiency.These findings highlight the potential of water trickle coolers in improving the performance and efficiency of gas turbine systems in hot and dry climates.
文摘To improve the heat dissipation of high-power light-emitting diodes (LEDs), a cooling system with a fan is proposed. In the experiment, the LEDs array of 18 W composed of 6 LEDs of 3 W is used and the room temperature is 26oC. Results show that the temperature of the substrate of LEDs reaches 62oC without the fan, however, it reaches only 32oC when the best cooling condition appears. The temperature of the LEDs decreases by 30oC since the heat produced by LEDs is transferred rapidly by the fan. The experiment demonstrates that the cooling system with the fan has good performance.