Based on the evolution of geological dynamics and spatial chaos theory, we proposed the advanced prediction an advanced prediction method of a gas desorption index of drill cuttings to predict coal and gas outbursts. ...Based on the evolution of geological dynamics and spatial chaos theory, we proposed the advanced prediction an advanced prediction method of a gas desorption index of drill cuttings to predict coal and gas outbursts. We investigated and verified the prediction method by a spatial series data of a gas desorption index of drill cuttings obtained from the 113112 coal roadway at the Shitai Mine. Our experimental results show that the spatial distribution of the gas desorption index of drill cuttings has some chaotic charac- teristics, which implies that the risk of coal and gas outbursts can be predicted by spatial chaos theory. We also found that a proper amount of sample data needs to be chosen in order to ensure the accuracy and practical maneuverability of prediction. The relative prediction error is small when the prediction pace is chosen carefully. In our experiments, it turned out that the optimum number of sample points is 80 and the optimum prediction pace 30. The corresponding advanced prediction pace basically meets the requirements of engineering applications.展开更多
To accurately predict the risk of coal and gas outburst and evaluate the reliability of desorption indexes of drilling cuttings(K_(1) andΔh_(2))in No.16 coal seam of Pingmei No.12 coal mine,two sets of coal samples w...To accurately predict the risk of coal and gas outburst and evaluate the reliability of desorption indexes of drilling cuttings(K_(1) andΔh_(2))in No.16 coal seam of Pingmei No.12 coal mine,two sets of coal samples were selected from the target coal seams for proximate analyses,methane adsorption/desorption tests,and desorption indexes of drilling cuttings tests.The results indicated that the desorption volume in the initial stage of desorption is large,and increases slowly in the later stage.The methane desorption volume of PMD1 and PMD2 coal samples accounts for 15.14%-18.09%and 15.72%-18.17%respectively in the first 1 min,and 43.92%-48.55%and 41.87%-52.25%respectively in the first 10 min in the 120 min desorption tests.Both K_(1) andΔh_(2) present power function relationships with methane pressure.Similarly,the power function relationships also can be found between the initial desorption characteristics(Q1 and Q4-5)and the methane pressure.Finally,the average relative error between the measured value and the calculated value of Q1 based on K_(1) is less than that of Q4-5 based onΔh_(2),which indicates that K_(1) is a more reliable index thanΔh_(2) to predict the risk of coal and gas outburst in the No.16 coal seam of Pingmei No.12 coal mine.展开更多
基金Financial support for this work, provided by the National Basic Research Program of China (No.2011CB201204)the National Youth Science Foundation Program (No.50904068)+1 种基金the Heilongjiang Science & Technology Scientific Research Foundation Program for the Eighth Introduction of Talent (No.06-26)the National Engineering Research Center for Coal Gas Control
文摘Based on the evolution of geological dynamics and spatial chaos theory, we proposed the advanced prediction an advanced prediction method of a gas desorption index of drill cuttings to predict coal and gas outbursts. We investigated and verified the prediction method by a spatial series data of a gas desorption index of drill cuttings obtained from the 113112 coal roadway at the Shitai Mine. Our experimental results show that the spatial distribution of the gas desorption index of drill cuttings has some chaotic charac- teristics, which implies that the risk of coal and gas outbursts can be predicted by spatial chaos theory. We also found that a proper amount of sample data needs to be chosen in order to ensure the accuracy and practical maneuverability of prediction. The relative prediction error is small when the prediction pace is chosen carefully. In our experiments, it turned out that the optimum number of sample points is 80 and the optimum prediction pace 30. The corresponding advanced prediction pace basically meets the requirements of engineering applications.
基金the financial support from the National Natural Science Foundation of China(No.51874294,52034008).
文摘To accurately predict the risk of coal and gas outburst and evaluate the reliability of desorption indexes of drilling cuttings(K_(1) andΔh_(2))in No.16 coal seam of Pingmei No.12 coal mine,two sets of coal samples were selected from the target coal seams for proximate analyses,methane adsorption/desorption tests,and desorption indexes of drilling cuttings tests.The results indicated that the desorption volume in the initial stage of desorption is large,and increases slowly in the later stage.The methane desorption volume of PMD1 and PMD2 coal samples accounts for 15.14%-18.09%and 15.72%-18.17%respectively in the first 1 min,and 43.92%-48.55%and 41.87%-52.25%respectively in the first 10 min in the 120 min desorption tests.Both K_(1) andΔh_(2) present power function relationships with methane pressure.Similarly,the power function relationships also can be found between the initial desorption characteristics(Q1 and Q4-5)and the methane pressure.Finally,the average relative error between the measured value and the calculated value of Q1 based on K_(1) is less than that of Q4-5 based onΔh_(2),which indicates that K_(1) is a more reliable index thanΔh_(2) to predict the risk of coal and gas outburst in the No.16 coal seam of Pingmei No.12 coal mine.