Many evidences for gas hydrate bearing sediments had been found in the continental slope of the East China Sea,such as bottom simulating reflections(BSRs),undersea gas springs,pyrite associated with methane leakage,mu...Many evidences for gas hydrate bearing sediments had been found in the continental slope of the East China Sea,such as bottom simulating reflections(BSRs),undersea gas springs,pyrite associated with methane leakage,mud diapirs/mud volcanos,bottom-water methane anomalies and so on.In this study,six key stratigraphic interfaces including T_0(seafloor),T_1(LGM,23 kyr B.P.),T_2(2.58 Myr),T_3(5.33 Myr),T_4(11.02 Myr)and T_5(16.12 Myr)were identified,and then five third-order sequences of SQIII1 to SQIII5 were divided.However,T5 in southern continental slope is not found,which shows that the middle-northern Okinawa Trough had begun to rift in the early Miocene,earlier than the southern segment.Four system tracts including lowstand systems tract(LST),transgressive systems tract(TST),highstand systems tract(HST)and falling stage systems tract(FSST)are further divided.The marine erosion interface of 11.02 Myr and regressive unconformity interface of 23 kyr B.P.indicate two large-scale sea level drop events in the research area.Seven typical seismic facies identified in the continental slope are continental shelf-edge deltas,littoral fluvial-delta plains,incised channels or submarine canyons,slope fans,submarine fans or coastal sandbars,littoral-neritic finegrained sediments,mud volcanos and some other geological bodies respectively.The minimum water depth for hydrate occurrence in the Okinawa Trough is 630 m,and the thickness of gas hydrate stability zone in continental slope is between 0 and 590 m.The calculated bottom boundary of hydrate stability zone is slightly deeper than BSRs on the seismic sections.The re-depositional turbidite sand bodies,such as canyon channels,slope fans and submarine fans developed in Quaternary strata,are the predominant hydrate reservoirs.According to developing process,the dynamic accumulation of hydrate systems can be divided into three evolutionary stages including canyon erosion and hydrate stability zone migration stage,sediments destabilizing and methane leakage stage,and channel filling and hydrate re-occurrence stage.展开更多
The early life stages of marine organisms are pivotal in shaping community dynamics and resource availability.In this study,we focused on Portunus trituberculatus,a crustacean integral to China's fisheries economy...The early life stages of marine organisms are pivotal in shaping community dynamics and resource availability.In this study,we focused on Portunus trituberculatus,a crustacean integral to China's fisheries economy,and examined the effect of sea surface temperature(SST)in its critical early life stages on subsequent yields.To analyze the correlation between SST in different larval stages and the corresponding yield of P.trituberculatus,we simulated the transport and distribution of larvae from 2014 to 2022 by employing circulation models and Lagrangian particle tracking experiments(LPTE).In the five years(2014,2015,2016,2019,and 2020),particles were transported in a northwestern direction and moved in the direction of low SST.The distribution of particles in the megalopa stage(M stage)were located in the region of the lower temperature.In 2017,2018,and 2021,the particles were transported in a northeastern direction but they did not move with the gradient of low SST in these years,and the particles in the last M stage were located in the region where the SST was at the peak of the time period.In 2022,the distribution was observed for most of the particles in the southwestern part of Zhejiang coast,a small part of them were transported in the northwestern direction and a small amount of particles was distributed offshore along the northern area of the Zhejiang coast.The correlations between the SST at each stage of larvae with the corresponding year's yield showed that the yield of P.trituberculatus decreased significantly(R=-0.772,P=0.015)with increasing SST at the M stage.This study preliminarily explains the correlation between SST at the larval stage and the yield of P.trituberculatus and provides essential information for scientific stock enhancement in the future.展开更多
Whitespotted conger Conger myriaster is a commercially important species in the seas around China, Korea and Japan. The coastal waters of China serve as an important feeding ground for congers, but the spatio-temporal...Whitespotted conger Conger myriaster is a commercially important species in the seas around China, Korea and Japan. The coastal waters of China serve as an important feeding ground for congers, but the spatio-temporal variations in the fishery and biological characteristics of the population have been rarely evaluated and less well understood in this area. We studied the growth, spawning and feeding characteristics of C. myriaster on the basis of samples collected from October 2016 to April 2017 in the Yellow Sea and East China Sea. A total of 529 specimens were collected, with ages ranging from 1 to 6 years and total length ranging from 132 mm to 834 mm. The parameters of von Bertalanffy growth equation L∞ and k were 1 026 mm and 0.226 a^–1, respectively;the sex ratio was 88:0 (female: male) in the East China Sea and 2.67:1 in the South Yellow Sea;the development stage of ovary ranged from peri-nucleolus stage to secondary yolk globule stage, and the testis of two males was at midmeiotic stage;Crustacean was the major prey for conger of small length, and food source shift to fish with somatic growth. The results showed substantial differences from previous studies in Japan and Korean waters, as well as from China seas in the 1980s, suggesting potential spatiotemporal changes in the biological characteristics of C. myriaster. This study may improve current understanding of the fishery biology of C. myriaster in the Yellow Sea and East China Sea.展开更多
As an efficient clean energy,natural gas hydrate(NGH)has become a hot topic in recent researches.Since1990 s,China has made great achievements and progress in NGH exploration in the South China Sea(SCS),including dete...As an efficient clean energy,natural gas hydrate(NGH)has become a hot topic in recent researches.Since1990 s,China has made great achievements and progress in NGH exploration in the South China Sea(SCS),including determination of the favorable distribution areas and favorable strata thickness,identification of the dual source for accumulation,evaluation of the prospective gas contents,verification of the widespread existence,and confirmation of the technical recoverability of NGH resources.However,there are three major challenges in the NGH studies.First,all the 24 national key and major projects in the SCS focused on trial production engineering and geological engineering in the past 20 years,while 8 of the 10 international NGH research projects focused on resource potential.Second,resource evaluation methods are outdated and some parameter selection are subjective.Third,the existing resource evaluation results are low-level with a great uncertainty,and cannot be used to guide NGH exploration and production or strategic research.To improve the evaluation of NGH resources in the SCS,future researches should focus on four aspects:(1)improve the research on the criterion of the objective existence of NGH and the method of prediction and evaluation;(2)apply new theories and methods from the global NGH research;(3)boost the research on the difference and correlation of the conditions of hydrocarbon migration and accumulation in different basins;(4)innovate the theory and method of NGH resource potential evaluation.展开更多
Newly acquired high-resolution shallow seismic profiles(7069 km in length) in the coastal and offshore areas of Zhejiang Province, East China Sea, China, have revealed eight marine hazardous geological features: shall...Newly acquired high-resolution shallow seismic profiles(7069 km in length) in the coastal and offshore areas of Zhejiang Province, East China Sea, China, have revealed eight marine hazardous geological features: shallow gas, sand ridges, erosion ditches, scarps, irregular bedrock features, underwater shoals, buried paleo-channels, and submarine deltas. Based on the seismic profiles, we have constructed a marine geological map of these hazardous features. Shallow gas accumulations are common and occur mainly in two separate nearshore regions that cover 4613 and 3382 km^2 respectively. There are also scattered shallow gas accumulations in the offshore area, typically accompanied by paleo-channels that occur mainly in the middle of the study area. Sand ridges, erosion ditches, scarps, and irregular bedrock features are found mainly in the northeast of the study area in association with each other. In the southeastern part of the study area, the sand ridges have a linear form and trend NW–SE, representing the western part of the linear sand ridges in the East China Sea. The maximum slope gradient is 1?, which suggests that this area is prone to landslides. These hazardous marine geological features are important to marine and engineering activities in this region.展开更多
The bimodal structure of the Meiyu front system is readdressed after Zhou et al.(2005). The physical mechanism of the formation of the bimodal distribution is discussed. The bimodal structure of the Melyu front syst...The bimodal structure of the Meiyu front system is readdressed after Zhou et al.(2005). The physical mechanism of the formation of the bimodal distribution is discussed. The bimodal structure of the Melyu front system considerably results from atmospheric moisture gradients, though atmospheric temperature gradients are also not negligible. According to the definition of equivalent potential temperature, and by scale analysis, we find that atmospheric equivalent potential temperature gradients, which could be regarded as an indicator of the Meiyu front system, could be mainly attributed to the variations of atmospheric potential temperature gradients with a scaling factor of 1 and moisture gradients multiplied by a scaling factor of an order of about 2.5 × 10^3, which means that small variations of atmospheric moisture gradients could lead to large variations of equivalent potential temperature gradients, and thus large variations of the Meiyu front system. Quantitative diagnostics with a mesoscale simulation data in the vicinity of the Meiyu front system show that moisture gradients contribute to equivalent potential temperature gradients more than potential temperature gradients.展开更多
对2008—2014年中国东部海域春季海上发展气旋进行了统计与诊断分析。结果表明:1)这类气旋属于较浅薄的低值系统,垂直伸展高度多在600 h Pa以下,水平尺度多在1 500 km以内。伴随的强天气为大风、大浪与强降水,落区主要位于气旋东南部。2...对2008—2014年中国东部海域春季海上发展气旋进行了统计与诊断分析。结果表明:1)这类气旋属于较浅薄的低值系统,垂直伸展高度多在600 h Pa以下,水平尺度多在1 500 km以内。伴随的强天气为大风、大浪与强降水,落区主要位于气旋东南部。2)气旋环流各层的大风急流区构成了气旋的东南部位,称为气旋急流。从高层到低层,气旋急流轴在垂直方向上呈逆时针旋转,形成气旋上大下小的漏斗形状。3)气旋急流左侧的气旋式切变有利于气旋中心强度的维持,上层气旋急流左侧对应下层气旋急流前部流速辐合区,有利于气旋式动力抽吸及在气旋东南部形成强的垂直上升运动区。各层气旋急流配置导致气旋的非对称结构,以及气旋要素的非对称分布。气旋急流向气旋中输入螺旋度以及充足的水汽,并在东南部强烈抬升,增强了凝结潜热释放,从热力和动力两方面促进气旋发展及强天气落区。4)春季下垫面温度分布(锋区)有利于气旋急流的增强,并通过西北部非绝热冷却和东南部非绝热加热,增强气旋斜压性。高空环境西风急流位于气旋右侧,形成了整层偏差风辐合,有效增强低层气旋急流。同时高空动量下传位于气旋西侧,首先增强气旋西北部的弱流部分(即气旋螺旋结构的下沉支),进而增强整个气旋的螺旋环流,促使气旋急流也从下层开始增强。展开更多
基金supported by the National Natural Science Foundation of China (Nos. 41806073, 41530963)the Natural Science Foundation of Shandong Province (No. ZR 2017BD014)+1 种基金the Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, Shandong University of Science and Technology (No. DMSM 2017042)the Fundamental Research Funds for the Central Universities (Nos. 201964016, 201851023)
文摘Many evidences for gas hydrate bearing sediments had been found in the continental slope of the East China Sea,such as bottom simulating reflections(BSRs),undersea gas springs,pyrite associated with methane leakage,mud diapirs/mud volcanos,bottom-water methane anomalies and so on.In this study,six key stratigraphic interfaces including T_0(seafloor),T_1(LGM,23 kyr B.P.),T_2(2.58 Myr),T_3(5.33 Myr),T_4(11.02 Myr)and T_5(16.12 Myr)were identified,and then five third-order sequences of SQIII1 to SQIII5 were divided.However,T5 in southern continental slope is not found,which shows that the middle-northern Okinawa Trough had begun to rift in the early Miocene,earlier than the southern segment.Four system tracts including lowstand systems tract(LST),transgressive systems tract(TST),highstand systems tract(HST)and falling stage systems tract(FSST)are further divided.The marine erosion interface of 11.02 Myr and regressive unconformity interface of 23 kyr B.P.indicate two large-scale sea level drop events in the research area.Seven typical seismic facies identified in the continental slope are continental shelf-edge deltas,littoral fluvial-delta plains,incised channels or submarine canyons,slope fans,submarine fans or coastal sandbars,littoral-neritic finegrained sediments,mud volcanos and some other geological bodies respectively.The minimum water depth for hydrate occurrence in the Okinawa Trough is 630 m,and the thickness of gas hydrate stability zone in continental slope is between 0 and 590 m.The calculated bottom boundary of hydrate stability zone is slightly deeper than BSRs on the seismic sections.The re-depositional turbidite sand bodies,such as canyon channels,slope fans and submarine fans developed in Quaternary strata,are the predominant hydrate reservoirs.According to developing process,the dynamic accumulation of hydrate systems can be divided into three evolutionary stages including canyon erosion and hydrate stability zone migration stage,sediments destabilizing and methane leakage stage,and channel filling and hydrate re-occurrence stage.
基金Supported by the National Key Research and Development Program of China(No.2019YFD0901304)the Public Welfare Technology Application Research Project of Zhejiang(No.LGN21C190009)the Science and Technology Project of Zhoushan(No.2022C41003)。
文摘The early life stages of marine organisms are pivotal in shaping community dynamics and resource availability.In this study,we focused on Portunus trituberculatus,a crustacean integral to China's fisheries economy,and examined the effect of sea surface temperature(SST)in its critical early life stages on subsequent yields.To analyze the correlation between SST in different larval stages and the corresponding yield of P.trituberculatus,we simulated the transport and distribution of larvae from 2014 to 2022 by employing circulation models and Lagrangian particle tracking experiments(LPTE).In the five years(2014,2015,2016,2019,and 2020),particles were transported in a northwestern direction and moved in the direction of low SST.The distribution of particles in the megalopa stage(M stage)were located in the region of the lower temperature.In 2017,2018,and 2021,the particles were transported in a northeastern direction but they did not move with the gradient of low SST in these years,and the particles in the last M stage were located in the region where the SST was at the peak of the time period.In 2022,the distribution was observed for most of the particles in the southwestern part of Zhejiang coast,a small part of them were transported in the northwestern direction and a small amount of particles was distributed offshore along the northern area of the Zhejiang coast.The correlations between the SST at each stage of larvae with the corresponding year's yield showed that the yield of P.trituberculatus decreased significantly(R=-0.772,P=0.015)with increasing SST at the M stage.This study preliminarily explains the correlation between SST at the larval stage and the yield of P.trituberculatus and provides essential information for scientific stock enhancement in the future.
基金The National Natural Science Foundation of China under contract No.31772852the Fundamental Research Funds for the Central Universities under contract No.201562030
文摘Whitespotted conger Conger myriaster is a commercially important species in the seas around China, Korea and Japan. The coastal waters of China serve as an important feeding ground for congers, but the spatio-temporal variations in the fishery and biological characteristics of the population have been rarely evaluated and less well understood in this area. We studied the growth, spawning and feeding characteristics of C. myriaster on the basis of samples collected from October 2016 to April 2017 in the Yellow Sea and East China Sea. A total of 529 specimens were collected, with ages ranging from 1 to 6 years and total length ranging from 132 mm to 834 mm. The parameters of von Bertalanffy growth equation L∞ and k were 1 026 mm and 0.226 a^–1, respectively;the sex ratio was 88:0 (female: male) in the East China Sea and 2.67:1 in the South Yellow Sea;the development stage of ovary ranged from peri-nucleolus stage to secondary yolk globule stage, and the testis of two males was at midmeiotic stage;Crustacean was the major prey for conger of small length, and food source shift to fish with somatic growth. The results showed substantial differences from previous studies in Japan and Korean waters, as well as from China seas in the 1980s, suggesting potential spatiotemporal changes in the biological characteristics of C. myriaster. This study may improve current understanding of the fishery biology of C. myriaster in the Yellow Sea and East China Sea.
基金financially supported by the CAS consultation project“South China Sea Oil and Gas Comprehensive Development Strategy”(2019-ZW11-Z-035)the National Basic Research Program of China(2006CB202300,2011CB201100)the National HighTech R&D(863)Program of China(2013AA092600)。
文摘As an efficient clean energy,natural gas hydrate(NGH)has become a hot topic in recent researches.Since1990 s,China has made great achievements and progress in NGH exploration in the South China Sea(SCS),including determination of the favorable distribution areas and favorable strata thickness,identification of the dual source for accumulation,evaluation of the prospective gas contents,verification of the widespread existence,and confirmation of the technical recoverability of NGH resources.However,there are three major challenges in the NGH studies.First,all the 24 national key and major projects in the SCS focused on trial production engineering and geological engineering in the past 20 years,while 8 of the 10 international NGH research projects focused on resource potential.Second,resource evaluation methods are outdated and some parameter selection are subjective.Third,the existing resource evaluation results are low-level with a great uncertainty,and cannot be used to guide NGH exploration and production or strategic research.To improve the evaluation of NGH resources in the SCS,future researches should focus on four aspects:(1)improve the research on the criterion of the objective existence of NGH and the method of prediction and evaluation;(2)apply new theories and methods from the global NGH research;(3)boost the research on the difference and correlation of the conditions of hydrocarbon migration and accumulation in different basins;(4)innovate the theory and method of NGH resource potential evaluation.
基金supported by the China-ASEAN maritime cooperation fund (Comparative Study of Holocene Sedimentary Evolution of the Yangtze River Delta and the Red River Delta)the National Natural Science Foundation of China (Nos. 41306063 and 41330964)the China Geology Survey (Nos. GZH201200506 and DD20 160145)
文摘Newly acquired high-resolution shallow seismic profiles(7069 km in length) in the coastal and offshore areas of Zhejiang Province, East China Sea, China, have revealed eight marine hazardous geological features: shallow gas, sand ridges, erosion ditches, scarps, irregular bedrock features, underwater shoals, buried paleo-channels, and submarine deltas. Based on the seismic profiles, we have constructed a marine geological map of these hazardous features. Shallow gas accumulations are common and occur mainly in two separate nearshore regions that cover 4613 and 3382 km^2 respectively. There are also scattered shallow gas accumulations in the offshore area, typically accompanied by paleo-channels that occur mainly in the middle of the study area. Sand ridges, erosion ditches, scarps, and irregular bedrock features are found mainly in the northeast of the study area in association with each other. In the southeastern part of the study area, the sand ridges have a linear form and trend NW–SE, representing the western part of the linear sand ridges in the East China Sea. The maximum slope gradient is 1?, which suggests that this area is prone to landslides. These hazardous marine geological features are important to marine and engineering activities in this region.
文摘The bimodal structure of the Meiyu front system is readdressed after Zhou et al.(2005). The physical mechanism of the formation of the bimodal distribution is discussed. The bimodal structure of the Melyu front system considerably results from atmospheric moisture gradients, though atmospheric temperature gradients are also not negligible. According to the definition of equivalent potential temperature, and by scale analysis, we find that atmospheric equivalent potential temperature gradients, which could be regarded as an indicator of the Meiyu front system, could be mainly attributed to the variations of atmospheric potential temperature gradients with a scaling factor of 1 and moisture gradients multiplied by a scaling factor of an order of about 2.5 × 10^3, which means that small variations of atmospheric moisture gradients could lead to large variations of equivalent potential temperature gradients, and thus large variations of the Meiyu front system. Quantitative diagnostics with a mesoscale simulation data in the vicinity of the Meiyu front system show that moisture gradients contribute to equivalent potential temperature gradients more than potential temperature gradients.
文摘对2008—2014年中国东部海域春季海上发展气旋进行了统计与诊断分析。结果表明:1)这类气旋属于较浅薄的低值系统,垂直伸展高度多在600 h Pa以下,水平尺度多在1 500 km以内。伴随的强天气为大风、大浪与强降水,落区主要位于气旋东南部。2)气旋环流各层的大风急流区构成了气旋的东南部位,称为气旋急流。从高层到低层,气旋急流轴在垂直方向上呈逆时针旋转,形成气旋上大下小的漏斗形状。3)气旋急流左侧的气旋式切变有利于气旋中心强度的维持,上层气旋急流左侧对应下层气旋急流前部流速辐合区,有利于气旋式动力抽吸及在气旋东南部形成强的垂直上升运动区。各层气旋急流配置导致气旋的非对称结构,以及气旋要素的非对称分布。气旋急流向气旋中输入螺旋度以及充足的水汽,并在东南部强烈抬升,增强了凝结潜热释放,从热力和动力两方面促进气旋发展及强天气落区。4)春季下垫面温度分布(锋区)有利于气旋急流的增强,并通过西北部非绝热冷却和东南部非绝热加热,增强气旋斜压性。高空环境西风急流位于气旋右侧,形成了整层偏差风辐合,有效增强低层气旋急流。同时高空动量下传位于气旋西侧,首先增强气旋西北部的弱流部分(即气旋螺旋结构的下沉支),进而增强整个气旋的螺旋环流,促使气旋急流也从下层开始增强。