期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
Research on the Control Strategy of Variable Nozzle Turbocharger for Natural Gas Engine 被引量:2
1
作者 郝利君 黄英 +1 位作者 张付军 葛蕴珊 《Journal of Beijing Institute of Technology》 EI CAS 2010年第1期37-41,共5页
A variable nozzle turbocharger (VNT) was applied to a 2.2-liter L4 natural gas engine,and a VNT control system was designed to operate it.Based on VNT matching test results,a VNT control strategy was studied,in whic... A variable nozzle turbocharger (VNT) was applied to a 2.2-liter L4 natural gas engine,and a VNT control system was designed to operate it.Based on VNT matching test results,a VNT control strategy was studied,in which VNT adjustment is carried out through pre-calibrated VNT handling rod position,combined with a closed-loop target boost pressure feedback using proportional-integral-derivative(PID) algorithm.Experimental results showed that the VNT control system presented in this thesis can lead to optimized performance of VNT,increase engine volumetric efficiency over a wide speed range,improve engine dynamic characteristics and upgrade economic performance. 展开更多
关键词 natural gas engine variable nozzle turbocharger (VNT) proportional-integral-derivative(PID) control control strategy experimental study
下载PDF
High-Efficiency and Clean Combustion Natural Gas Engines for Vehicles 被引量:1
2
作者 Fubai Li Zhi Wang +1 位作者 Yunfei Wang Boyuan Wang 《Automotive Innovation》 EI CSCD 2019年第4期284-304,共21页
Natural gas engines have become increasingly important in transportation applications,especially in the commercial vehicle sector.With increasing demand for high efficiency and low emissions,new technologies must be e... Natural gas engines have become increasingly important in transportation applications,especially in the commercial vehicle sector.With increasing demand for high efficiency and low emissions,new technologies must be explored to overcome the performance limitations of natural gas engines such as limits on lean or dilute combustion,unstable combustion,low burning velocity,and high emissions of CH_(4) and NO_(x).This paper reviews the progress of research on natural gas engines over recent decades,concentrating on ignition and combustion systems,mixture preparation,the development of different combustion modes,and after-treatment strategies.First,the features,advantages,and disadvantages of natural gas engines are introduced,following which the development of advanced ignition systems,organization of highly turbulent flows,and the preparation of high-reactivity mixtures in spark ignition engines are discussed with a focus on pre-chamber jet ignition,combustion chamber design,and H_(2)-enriched natural gas combustion.Third,the progress in natural gas dual-fuel engines is highlighted,including the exploration of new combustion modes,the development of novel pilot fuels,and the optimization of combustion control strategies.The fourth section discusses after-treatment systems for natural gas engines operating in different combustion modes.Finally,conclusions and future trends in the development of high-efficiency and clean combus-tion in natural gas engines are summarized. 展开更多
关键词 Natural gas engines Pre-chamber jet ignition Combustion chamber Fuel reforming Dual-fuel combustion After-treatment
原文传递
Analysis of Emissions Profiles of Hydraulic Fracturing Engine Technologies
3
作者 William Nieuwenburg Andrew C. Nix +3 位作者 Dan Fu Tony Yeung Warren Zemlak Nick Wells 《Energy and Power Engineering》 CAS 2023年第1期1-34,共36页
Today, the oil and gas industry, and in particular hydraulic fracturing operations, have come under increasing pressure from regulators and the public to reduce emissions. As the industry evolves, oil and gas producer... Today, the oil and gas industry, and in particular hydraulic fracturing operations, have come under increasing pressure from regulators and the public to reduce emissions. As the industry evolves, oil and gas producers are in the position of evaluating alternative technologies which will support their objectives of reducing their overall emissions profile and carbon footprint. As a response, the deployment of technology and solutions to reduce emissions related to hydraulic fracturing applications has recently accelerated, creating various options to address these industry challenges. BJ Energy Solutions and West Virginia University have been working on the application and emissions characterization of various hydraulic fracturing technologies. A study was conducted to evaluate the efficiency and resultant emissions from various technologies, including natural gas reciprocating engines, diesel-natural gas dual-fuel engines, large (>24 MW) gas turbines, and direct drive turbines. The study involved the development of an emissions model with the purpose of estimating total emissions of carbon dioxide (CO<sub>2</sub>), nitrous oxide (N2O) and exhaust methane (CH<sub>4</sub>) slip, all Greenhouse Gases (GHGs), and converted to tons of CO<sub>2</sub> equivalent emissions per day of operation. The model inputs are the required Hydraulic Horsepower (HHP) based on pumping rate and pressure for various shale play scenarios. The model calculates emissions from the TITAN, which is a direct-drive turbine model fielded by BJ, using data collected following U.S. Environmental Protection Agency (EPA) testing protocols. The model also calculates and compares other hydraulic fracturing technologies utilizing published Original Equipment Manufacturer (OEM) data. Relevant EPA-regulated criteria emissions of oxides of nitrogen (NO<sub>x</sub>), Carbon Monoxide (CO) and Particulate Matter (PM) are also reported. Modeling results demonstrated that in most cases, the TITAN gas turbine system has lower total GHG emissions than conventional diesel and other next-generation technologies, and also has lower criteria emissions. The benefits of the TITAN gas turbine system compared to the other technologies stems from significantly lower methane slip, and the high-power transfer efficiency resulting from directly connecting a turbine to a reciprocating pump, despite the comparatively lower thermal efficiency. 展开更多
关键词 Hydraulic Fracturing Greenhouse gas Emissions gas Turbines Natural gas engines engine Efficiency EPA-Regulated Emissions
下载PDF
Preparation and characterization of LPPS NiCoCrAlYTa coatings for gas turbine engine 被引量:4
4
作者 洪瑞江 周克崧 +2 位作者 王德政 朱晖朝 邝子奇 《中国有色金属学会会刊:英文版》 CSCD 2001年第4期567-571,共5页
NiCoCrAlYTa coatings have been deposited onto an aircraft gas turbine engine blade using a LPPS unit equipped with a computerized robot. Optimal processing conditions, including spray parameters, the trajectory of the... NiCoCrAlYTa coatings have been deposited onto an aircraft gas turbine engine blade using a LPPS unit equipped with a computerized robot. Optimal processing conditions, including spray parameters, the trajectory of the robot, and the synchronized movements between the torch and the blade, have been developed for superior coating properties. Transferred arc treatment, providing a preheating and a cleaning of the substrate surface, enhances the adherence of the coatings to the substrate. The resulting LPPS coatings show dense and uniform characteristics with ideal hardness, and good corrosion resistance to cycle oxidation. 展开更多
关键词 low pressure plasma spraying hot corrosion COATING gas turbine engine MCRALY
下载PDF
Progress and prospects of oil and gas production engineering technology in China 被引量:2
5
作者 ZHENG Xinquan SHI Junfeng +4 位作者 CAO Gang YANG Nengyu CUI Mingyue JIA Deli LIU He 《Petroleum Exploration and Development》 CSCD 2022年第3期644-659,共16页
This paper summarizes the important progress in the field of oil and gas production engineering during the"Thirteenth Five-Year Plan"period of China,analyzes the challenges faced by the current oil and gas p... This paper summarizes the important progress in the field of oil and gas production engineering during the"Thirteenth Five-Year Plan"period of China,analyzes the challenges faced by the current oil and gas production engineering in terms of technological adaptability,digital construction,energy-saving and emission reduction,and points out the future development direction.During the"Thirteenth Five-Year Plan"period,series of important progresses have been made in five major technologies,including separated-layer injection,artificial lift,reservoir stimulation,gas well de-watering,and workover,which provide key technical support for continuous potential tapping of mature oilfields and profitable production of new oilfields.Under the current complex international political and economic situation,oil and gas production engineering is facing severe challenges in three aspects:technical difficulty increases in oil and gas production,insignificant improvements in digital transformation,and lack of core technical support for energy-saving and emission reduction.This paper establishes three major strategic directions and implementation paths,including oil stabilization and gas enhancement,digital transformation,and green and low-carbon development.Five key research areas are listed including fine separated-layer injection technology,high efficiency artificial lift technology,fine reservoir stimulation technology,long term gas well de-watering technology and intelligent workover technology,so as to provide engineering technical support for the transformation,upgrading and high-quality development of China’s oil and gas industry. 展开更多
关键词 oil and gas production engineering separated-layer injection artificial lift reservoir stimulation gas well de-watering WORKOVER digital transformation low carbon economy
下载PDF
Novel Oxygen Storage Components Promoted Palladium Catalysts for Emission Control in Natural Gas Powered Engines 被引量:1
6
作者 BinZHAO MaoChuGONG +1 位作者 XueSongFENG YongYueLUO 《Chinese Chemical Letters》 SCIE CAS CSCD 2005年第1期97-99,共3页
A three-way catalyst comprised novel oxygen storage components for emission control in natural gas powered engines was prepared. The addition of novel oxygen storage components to the Pd/γ-Al2O3 catalysts resulted ... A three-way catalyst comprised novel oxygen storage components for emission control in natural gas powered engines was prepared. The addition of novel oxygen storage components to the Pd/γ-Al2O3 catalysts resulted in improved activities of the fresh and aged catalyst by lowering the light-off temperature for methane in natural gas engines exhaust. 展开更多
关键词 Oxygen storage component (OSC) emission control for natural gas powered engines palladium catalysts light-off temperature.
下载PDF
Fault Identification and Health Monitoring of Gas Turbine Engines Using Hybrid Machine Learning-based Strategies 被引量:1
7
作者 Yan-yan Shen Khashayar Khorasani 《风机技术》 2022年第1期71-80,共10页
Ahealth monitoring scheme is developed in this work by using hybrid machine learning strategies to iden-tify the fault severity and assess the health status of the aircraft gas turbine engine that is subject to compon... Ahealth monitoring scheme is developed in this work by using hybrid machine learning strategies to iden-tify the fault severity and assess the health status of the aircraft gas turbine engine that is subject to component degrada-tions that are caused by fouling and erosion.The proposed hybrid framework involves integrating both supervised recur-rent neural networks and unsupervised self-organizing maps methodologies,where the former is developed to extract ef-fective features that can be associated with the engine health condition and the latter is constructed for fault severity modeling and tracking of each considered degradation mode.Advantages of our proposed methodology are that it ac-complishes fault identification and health monitoring objectives by only discovering inherent health information that are available in the system I/O data at each operating point.The effectiveness of our approach is validated and justified with engine data under various degradation modes in compressors and turbines. 展开更多
关键词 gas Turbine engines Health Monitoring Fault Identification Self-organizing Maps Machine Learn-ing Recurrent Neural Networks
下载PDF
Evaluation of the oil and gas preservation conditions, source rocks, and hydrocarbongenerating potential of the Qiangtang Basin: New evidence from the scientific drilling project 被引量:2
8
作者 Li-jun Shen Jian-yong Zhang +4 位作者 Shao-yun Xiong Jian Wang Xiu-gen Fu Bo Zheng Zhong-wei Wang 《China Geology》 CAS CSCD 2023年第2期187-207,共21页
The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of ... The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of well QK-1 and its supporting shallow boreholes for geological surveys(also referred to as the Project)completed in recent years contributes to a series of new discoveries and insights into the oil and gas preservation conditions and source rock evaluation of the Qiangtang Basin.These findings differ from previous views that the Qiangtang Basin has poor oil and gas preservation conditions and lacks high-quality source rocks.As revealed by well QK-1 and its supporting shallow boreholes in the Project,the Qiangtang Basin hosts two sets of high-quality regional seals,namely an anhydrite layer in the Quemo Co Formation and the gypsum-bearing mudstones in the Xiali Formation.Moreover,the Qiangtang Basin has favorable oil and gas preservation conditions,as verified by the comprehensive study of the sealing capacity of seals,basin structure,tectonic uplift,magmatic activity,and groundwater motion.Furthermore,the shallow boreholes have also revealed that the Qiangtang Basin has high-quality hydrocarbon source rocks in the Upper Triassic Bagong Formation,which are thick and widely distributed according to the geological and geophysical data.In addition,the petroleum geological conditions,such as the type,abundance,and thermal evolution of organic matter,indicate that the Qiangtang Basin has great hydrocarbon-generating potential. 展开更多
关键词 Scientific drilling project Oil and gas preservation Source rock Quemo Co Formation Oil and gas exploration engineering Qiangtang Basin Tibet
下载PDF
The Innovative Research Team of Oil & Gas Well Engineering
9
《Petroleum Science》 SCIE CAS CSCD 2005年第2期F002-F002,共1页
关键词 TEAM gas Well engineering
下载PDF
Flue Gas Desulfurization Testing andIts Engineering Practice
10
作者 LuoYonglu 《Electricity》 1999年第4期21-25,共5页
关键词 OH In SO Flue gas Desulfurization Testing andIts engineering Practice
下载PDF
Prestage Engineering for Dacheng Coalbed Gas Test Completed
11
《China Oil & Gas》 CAS 1998年第3期168-168,共1页
关键词 TEST Prestage engineering for Dacheng Coalbed gas Test Completed
下载PDF
Passability test and simulation of sand control string with natural gas hydrates completion in large curvature hole
12
作者 Hao-xian Shi Yan-jiang Yu +12 位作者 Ru-lei Qin Jun-yu Deng Yi-xin Zhong Li-qiang Qi Bin Li Bo Fan Qiu-ping Lu Jian Wang Kui-wei Li Ye-cheng Gan Gen-long Chen Hao-wen Chen Zhi-ming Wu 《China Geology》 CAS CSCD 2023年第1期27-36,共10页
To meet the requirements of marine natural gas hydrate exploitation,it is necessary to improve the penetration of completion sand control string in the large curvature borehole.In this study,large curvature test wells... To meet the requirements of marine natural gas hydrate exploitation,it is necessary to improve the penetration of completion sand control string in the large curvature borehole.In this study,large curvature test wells were selected to carry out the running test of sand control string with pre-packed screen.Meanwhile,the running simulation was performed by using the Landmark software.The results show that the sand control packer and screen can be run smoothly in the wellbore with a dogleg angle of more than 20°/30 m and keep the structure stable.Additionally,the comprehensive friction coefficient is 0.4,under which and the simulation shows that the sand control string for hydrate exploitation can be run smoothly.These findings have important guiding significance for running the completion sand control string in natural gas hydrate exploitation. 展开更多
关键词 Natural gas hydrates(NGHs) Completion sand control string Large curvature borehole Passability test Friction coefficient Oil and gas exploration engineering NGHs exploration trial engineering
下载PDF
Exploration prospects of oil and gas in the Northwestern part of the Offshore Indus Basin, Pakistan 被引量:1
13
作者 Jian-ming Gong Jing Liao +5 位作者 Jie Liang Bao-hua Lei Jian-wen Chen Muhammad Khalid Syed Waseem Haider Ming Meng 《China Geology》 2020年第4期633-642,共10页
Oil and gas resources are short in Pakistan and no commercially viable oil and gas sources have been yet discovered in its offshore areas up to now.In this study,the onshore-offshore stratigraphic correlation and seis... Oil and gas resources are short in Pakistan and no commercially viable oil and gas sources have been yet discovered in its offshore areas up to now.In this study,the onshore-offshore stratigraphic correlation and seismic data interpretation were conducted to determine the oil and gas resource potential in the Offshore Indus Basin,Pakistan.Based on the comprehensive analysis of the results and previous data,it is considered that the Cretaceous may widely exist and three sets of source rocks may be developed in the Offshore Indus Basin.The presence of Miocene mudstones has been proven by drilling to be high-quality source rocks,while the Cretaceous and Paleocene–Eocene mudstones are potential source rocks.Tectonic-lithologic traps are developed in the northwestern part of the basin affected by the strike-slip faults along Murray Ridge.Furthermore,the Cretaceous and Paleocene–Eocene source rocks are thick and are slightly affected by volcanic activities.Therefore,it can be inferred that the northwestern part of Offshore Indus Basin enjoys good prospects of oil and gas resources. 展开更多
关键词 Oil and gas CRETACEOUS Offshore Indus Basin Oil storage structure Oil and gas engineering Pakistan
下载PDF
Application of ultrasonic fatigue technology in very-high-cycle fatigue testing of aviation gas turbine engine blade materials:A review
14
作者 ZHAO JiuCheng WAN Jie +2 位作者 ZHANG ShiZhong YAN ChuLiang ZHAO HongWei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第5期1317-1363,共47页
The need for very-high-cycle fatigue(VHCF)testing up to 1010cycles of aviation gas turbine engine blade materials under combined mechanical loads and complex environments has encouraged the development of VHCF testing... The need for very-high-cycle fatigue(VHCF)testing up to 1010cycles of aviation gas turbine engine blade materials under combined mechanical loads and complex environments has encouraged the development of VHCF testing instrumentation and technology.This article begins with a comprehensive review of the existing available techniques that enable VHCF testing.Recent advances in ultrasonic fatigue testing(UFT)techniques are highlighted,containing their new capabilities and methods for single load,multiaxial load,variable amplitude fatigue,and combined cycle fatigue.New techniques for conducting UFT in high-temperature,humid environments,and corrosive environments are summarized.These developments in mechanical loading and environmental building techniques provide the possibility of laboratory construction for real service conditions of blade materials.New techniques that can be used for in situ monitoring of VHCF damage are summarized.Key issues in the UFT field are presented,and countermeasures are collated.Finally,the existing problems and future trends in the field are briefly described. 展开更多
关键词 aviation gas turbine engine blade materials ultrasonic fatigue very-high-cycle fatigue high-temperature complex stress in situ testing
原文传递
Geological characteristics of unconventional tight oil reservoir (10^(9) t): A case study of Upper Cretaceous Qingshankou Formation, northern Songliao Basin, NE China
15
作者 Li-zhi Shi Zhuo-zhuo Wang +4 位作者 Zhan-tao Xing Shan Meng Shuai Guo Si-miao Wu Li-yan Luo 《China Geology》 CAS CSCD 2024年第1期51-62,共12页
The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important r... The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important resource base of Daqing oilfield.After years of exploration in the Qijia area,Songliao Basin,NE China,tight oil has been found in the Upper Cretaceous Qingshankou Formation.To work out tight oil’s geological characteristics,taking tight oil in Gaotaizi oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example,this paper systematically analyzed the geological characteristics of unconventional tight oil in Gao3 and Gao4 layers of the Qijia area,based on the data of the geological survey,well drilling journey,well logging,and test.It is that three sets of hydrocarbon source rocks(K2qn1,K2qn2+3,and K2n1)develop in the examined area,and exhibit excellent type I and II kerogens,high organic matter abundance,and moderate maturity.The reservoir is generally composed of thin-bedded mudstone,siltstone,and sandstone,and presents poor porosity(average 8.5 vol.%)and air permeability(average 4 mD).The main reservoir space primarily includes intergranular pores,secondary soluble pores,and intergranular soluble pores.Three types of orifice throats were identified,namely fine throat,extra-fine throat,and micro-fine throat.The siltstone is generally oil-bearing,the reservoirs with slime and calcium become worse oil-bearing,and the mudstone has no obvious oil-bearing characteristics.The brittleness indices of the sandstone in the tight oil reservoir range from 40%to 60%,and those of the mudstone range from 40%to 45%,indicating a better brittleness of the tight oil reservoir.Based on the study of typical core hole data,this paper gives a comprehensive evaluation of the properties of the tight oil and establishes a tight oil single well composite bar chart as well as the initial evaluation system with the core of properties in the tight oil reservoir.This study has theoretical guiding significance and practical application value for tight oil exploration and evaluation in the Qijia area. 展开更多
关键词 Unconventional oil and gas Tight oil Thin-bedded mudstone-siltstone-sandstone reservoir Qijia area Qingshankou Formation Oil and gas exploration engineering Songliao Basin Daqing oilfield
下载PDF
Analysis of Non-Selective Catalyst Reduction Performance with Dedicated Exhaust Gas Recirculation
16
作者 Chris A. Van Roekel David T. Montgomery +1 位作者 Jaswinder Singh Daniel B. Olsen 《Advances in Chemical Engineering and Science》 2022年第2期114-129,共16页
Rich burn industrial natural gas engines offer best in class post catalyst emissions by using a non-selective catalyst reduction aftertreatment technology. However, they operate with reduced power density when compare... Rich burn industrial natural gas engines offer best in class post catalyst emissions by using a non-selective catalyst reduction aftertreatment technology. However, they operate with reduced power density when compared to lean burn engines. Dedicated exhaust gas recirculation (EGR) offers a possible pathway for rich burn engines to use non-selective catalyst reduction aftertreatment technology without sacrificing power density. In order to achieve best in class post catalyst emissions, the precious metals and washcoat of a non-selective catalyst must be designed according to the expected exhaust composition of an engine. In this work, a rich burn industrial natural gas engine operating with dedicated EGR was paired with a commercially available non-selective catalyst. At rated brake mean effective pressure (BMEP) the air-fuel ratio was swept between rich and lean conditions to compare the catalyst reduction efficiency and post catalyst emissions of rich burn and dedicated EGR combustion. It was found that due to low oxides of nitrogen (NO<sub>x</sub>) emissions across the entire air-fuel ratio range, dedicated EGR offers a much larger range of air-fuel ratios where low regulated emissions can be met. Low engine out NO<sub>x</sub> also points towards a possibility of using an oxidation catalyst rather than a non-selective catalyst for dedicated EGR applications. The location of the NO<sub>x</sub>-CO tradeoff was shifted to more rich conditions using dedicated EGR. 展开更多
关键词 Natural gas engine Rich Burn Dedicated Exhaust gas Recirculation CATALYST
下载PDF
Coexistence of natural gas hydrate,free gas and water in the gas hydrate system in the Shenhu Area,South China Sea 被引量:21
17
作者 Xu-wen Qin Jing-an Lu +6 位作者 Hai-long Lu Hai-jun Qiu Jin-qiang Liang Dong-ju Kang Lin-sen Zhan Hong-feng Lu Zeng-gui Kuang 《China Geology》 2020年第2期210-220,共11页
Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin,which is on the northern continental slope of the South China Sea.Gas hydrates in this area have been intensively investigated,achieving a wide cover... Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin,which is on the northern continental slope of the South China Sea.Gas hydrates in this area have been intensively investigated,achieving a wide coverage of the three-dimensional seismic survey,a large number of boreholes,and detailed data of the seismic survey,logging,and core analysis.In the beginning of 2020,China has successfully conducted the second offshore production test of gas hydrates in this area.In this paper,studies were made on the structure of the hydrate system for the production test,based on detailed logging data and core analysis of this area.As to the results of nuclear magnetic resonance(NMR)logging and sonic logging of Well GMGS6-SH02 drilled during the GMGS6 Expedition,the hydrate system on which the production well located can be divided into three layers:(1)207.8–253.4 mbsf,45.6 m thick,gas hydrate layer,with gas hydrate saturation of 0–54.5%(31%av.);(2)253.4–278 mbsf,24.6 m thick,mixing layer consisting of gas hydrates,free gas,and water,with gas hydrate saturation of 0–22%(10%av.)and free gas saturation of 0–32%(13%av.);(3)278–297 mbsf,19 m thick,with free gas saturation of less than 7%.Moreover,the pore water freshening identified in the sediment cores,taken from the depth below the theoretically calculated base of methane hydrate stability zone,indicates the occurrence of gas hydrate.All these data reveal that gas hydrates,free gas,and water coexist in the mixing layer from different aspects. 展开更多
关键词 Mixing layer gas hydrate NMR logging Sonic logging Core analysis Oil gas exploration engineering Shenhu Area South China Sea China
下载PDF
Sediment permeability change on natural gas hydrate dissociation induced by depressurization 被引量:4
18
作者 Lei Wang Li-juan Gu Hai-long Lu 《China Geology》 2020年第2期221-229,共9页
The permeability of a natural gas hydrate reservoir is a critical parameter associated with gas hydrate production.Upon producing gas from a hydrate reservoir via depressurization,the permeability of sediments changes... The permeability of a natural gas hydrate reservoir is a critical parameter associated with gas hydrate production.Upon producing gas from a hydrate reservoir via depressurization,the permeability of sediments changes in two ways with hydrate dissociation,increasing with more pore space released from hydrate and decreasing due to pore compression by stronger effective stress related to depressurization.In order to study the evolution of sediment permeability during the production process with the depressurization method,an improved pore network model(PNM)method is developed to establish the permeability change model.In this model,permeability change induced by hydrate dissociation is investigated under hydrate occurrence morphology of pore filling and grain coating.The results obtained show that hydrate occurrence in sediment pore is with significant influence on permeability change.Within a reasonable degree of pore compression in field trial,the effect of pore space release on the reservoir permeability is greater than that of pore compression.The permeability of hydrate containing sediments keeps increasing in the course of gas production,no matter with what hydrate occurrence in sediment pore. 展开更多
关键词 Natural gas hydrate Reservoir sediment PERMEABILITY Pore network model DEPRESSURIZATION Oil gas exploration engineering South China Sea China
下载PDF
The influence factors of gas-bearing and geological characteristics of Niutitang Formation shale in the southern margin of Xuefeng Mountain ancient uplift: A case of Well Huangdi 1 被引量:4
19
作者 Ming-na Ge Ke Chen +2 位作者 Xiang-lin Chen Chao Wang Shu-jing Bao 《China Geology》 2020年第4期533-544,共12页
In order to evaluate the geological characteristics and gas-bearing factors of Niutitang Formation within the Lower Cambrian of northern Guizhou,the Huangping area located at the southern edge of the ancient uplift be... In order to evaluate the geological characteristics and gas-bearing factors of Niutitang Formation within the Lower Cambrian of northern Guizhou,the Huangping area located at the southern edge of the ancient uplift belt of Xuefeng Mountain was selected as the target area,and Well Huangdi 1 was drilled for the geological survey of shale gas.Through geological background analysis and well logging and laboratory analysis such as organic geochemical test,gas content analysis,isothermal adsorption,and specific surface area experiments on Well Huangdi 1,the results show that the Niutitang Formation is a deep-water shelf,trough-like folds and thrust fault.The thickness of black shale is 119.95 m,of which carbonaceous shale is 89.6 m.The average value of organic carbon content is 3.55%,kerogen vitrinite reflectance value is 2.37% and kerogen type is sapropel-type.The brittle mineral content is 51%(quartz 38%),clay mineral content is 38.3%.The value of porosity and permeability are 0.5%and 0.0014 mD,which the reservoir of the Niutitang Formation belongs to low permeability with characteristics of ultra-low porosity.The gas content is 0.09‒1.31 m^3/t with a high-value area and a second high-value area.By comparing with the geological parameters of adjacent wells in the adjacent area,the accumulation model of“sediment control zone,Ro control zone,structure controlling reservoir”in the study area is proposed.Therefore,deep-water shelf-slope facies,Ro is between high maturity-early stage of overmaturity and well-preserved zones in the Niutitang Formation in this area are favorable direction for the next step of shale gas exploration. 展开更多
关键词 Shale gas gas-bearing Well Huangdi 1 Influence factors Niutitang Formation Xuefeng Mountain ancient uplift Oil and gas exploration engineering Lower Cambrian Guizhou Province China
下载PDF
Mesozoic–Cenozoic stress field magnitude in Sichuan Basin, China and its adjacent areas and the implication on shale gas reservoir: Determination by acoustic emission in rocks 被引量:3
20
作者 Lin-yan Zhang Li-cheng Ma +6 位作者 Xi-zhun Zhuo Min Dong Bo-wen Li Sheng-xin Liu Dong-sheng Sun Di Wu Xin-gui Zhou 《China Geology》 2020年第4期591-601,共11页
The Sichuan Basin is one of the vital basins in China,boasting abundant hydrocarbon reservoirs.To clarify the intensity of the tectonic stress field of different tectonic episodes since the Mesozoic and to identify th... The Sichuan Basin is one of the vital basins in China,boasting abundant hydrocarbon reservoirs.To clarify the intensity of the tectonic stress field of different tectonic episodes since the Mesozoic and to identify the regional dynamic background of different tectonic movements in the Sichuan Basin and its adjacent areas,the characteristics of the acoustic emission in rocks in different strata of these areas were researched in this paper.Meanwhile,the tectonic stress magnitude in these areas since the Mesozoic was restored.The laws state that the tectonic stress varied with depth was revealed,followed by the discussion of the influence of structural stress intensity on structural patterns in different tectonic episodes.These were conducted based on the paleostress measurement by acoustic emission method and the inversion principle of the stress fields in ancient periods and the present,as well as previous research achievements.The results of this paper demonstrate that the third episode of Yanshanian Movement(Yanshanian III)had the maximum activity intensity and tremendously influenced the structural pattern in the study area.The maximum horizontal principal stress of Yanshanian III varied with depth as follows:0.0168 x+37.001(MPa),R^2=0.8891.The regional structural fractures were mainly formed in Yanshanian III in Xujiahe Formation,west Sichuan Basin,of which the maximum paleoprincipal stress ranging from 85.1 MPa to 120.1 MPa.In addition,the law stating the present maximum horizontal principal stress varies with depth was determined to be 0.0159 x+10.221(MPa),R^2=0.7868 in Wuling Mountain area.Meanwhile,it was determined to be 0.0221 x+9.4733(MPa),R^2=0.9121 in the western part of Xuefeng Mountain area and 0.0174 x+10.247(MPa),R^2=0.8064 in the whole study area.These research results will not only provide data for the simulation of stress field,the evaluation of deformation degree,and the prediction of structural fractures,but also offer absolute geological scientific bases for the elevation of favorable shale gas preservation. 展开更多
关键词 Shale gas Tectonic movement MESOZOIC-CENOZOIC Stress field Acoustic emission measurement Oil and gas exploration engineering Sichuan Basin
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部