Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential en...Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment.展开更多
The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of ...The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of well QK-1 and its supporting shallow boreholes for geological surveys(also referred to as the Project)completed in recent years contributes to a series of new discoveries and insights into the oil and gas preservation conditions and source rock evaluation of the Qiangtang Basin.These findings differ from previous views that the Qiangtang Basin has poor oil and gas preservation conditions and lacks high-quality source rocks.As revealed by well QK-1 and its supporting shallow boreholes in the Project,the Qiangtang Basin hosts two sets of high-quality regional seals,namely an anhydrite layer in the Quemo Co Formation and the gypsum-bearing mudstones in the Xiali Formation.Moreover,the Qiangtang Basin has favorable oil and gas preservation conditions,as verified by the comprehensive study of the sealing capacity of seals,basin structure,tectonic uplift,magmatic activity,and groundwater motion.Furthermore,the shallow boreholes have also revealed that the Qiangtang Basin has high-quality hydrocarbon source rocks in the Upper Triassic Bagong Formation,which are thick and widely distributed according to the geological and geophysical data.In addition,the petroleum geological conditions,such as the type,abundance,and thermal evolution of organic matter,indicate that the Qiangtang Basin has great hydrocarbon-generating potential.展开更多
This paper summarizes the important progress in the field of oil and gas production engineering during the"Thirteenth Five-Year Plan"period of China,analyzes the challenges faced by the current oil and gas p...This paper summarizes the important progress in the field of oil and gas production engineering during the"Thirteenth Five-Year Plan"period of China,analyzes the challenges faced by the current oil and gas production engineering in terms of technological adaptability,digital construction,energy-saving and emission reduction,and points out the future development direction.During the"Thirteenth Five-Year Plan"period,series of important progresses have been made in five major technologies,including separated-layer injection,artificial lift,reservoir stimulation,gas well de-watering,and workover,which provide key technical support for continuous potential tapping of mature oilfields and profitable production of new oilfields.Under the current complex international political and economic situation,oil and gas production engineering is facing severe challenges in three aspects:technical difficulty increases in oil and gas production,insignificant improvements in digital transformation,and lack of core technical support for energy-saving and emission reduction.This paper establishes three major strategic directions and implementation paths,including oil stabilization and gas enhancement,digital transformation,and green and low-carbon development.Five key research areas are listed including fine separated-layer injection technology,high efficiency artificial lift technology,fine reservoir stimulation technology,long term gas well de-watering technology and intelligent workover technology,so as to provide engineering technical support for the transformation,upgrading and high-quality development of China’s oil and gas industry.展开更多
The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important r...The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important resource base of Daqing oilfield.After years of exploration in the Qijia area,Songliao Basin,NE China,tight oil has been found in the Upper Cretaceous Qingshankou Formation.To work out tight oil’s geological characteristics,taking tight oil in Gaotaizi oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example,this paper systematically analyzed the geological characteristics of unconventional tight oil in Gao3 and Gao4 layers of the Qijia area,based on the data of the geological survey,well drilling journey,well logging,and test.It is that three sets of hydrocarbon source rocks(K2qn1,K2qn2+3,and K2n1)develop in the examined area,and exhibit excellent type I and II kerogens,high organic matter abundance,and moderate maturity.The reservoir is generally composed of thin-bedded mudstone,siltstone,and sandstone,and presents poor porosity(average 8.5 vol.%)and air permeability(average 4 mD).The main reservoir space primarily includes intergranular pores,secondary soluble pores,and intergranular soluble pores.Three types of orifice throats were identified,namely fine throat,extra-fine throat,and micro-fine throat.The siltstone is generally oil-bearing,the reservoirs with slime and calcium become worse oil-bearing,and the mudstone has no obvious oil-bearing characteristics.The brittleness indices of the sandstone in the tight oil reservoir range from 40%to 60%,and those of the mudstone range from 40%to 45%,indicating a better brittleness of the tight oil reservoir.Based on the study of typical core hole data,this paper gives a comprehensive evaluation of the properties of the tight oil and establishes a tight oil single well composite bar chart as well as the initial evaluation system with the core of properties in the tight oil reservoir.This study has theoretical guiding significance and practical application value for tight oil exploration and evaluation in the Qijia area.展开更多
Oil and gas resources are short in Pakistan and no commercially viable oil and gas sources have been yet discovered in its offshore areas up to now.In this study,the onshore-offshore stratigraphic correlation and seis...Oil and gas resources are short in Pakistan and no commercially viable oil and gas sources have been yet discovered in its offshore areas up to now.In this study,the onshore-offshore stratigraphic correlation and seismic data interpretation were conducted to determine the oil and gas resource potential in the Offshore Indus Basin,Pakistan.Based on the comprehensive analysis of the results and previous data,it is considered that the Cretaceous may widely exist and three sets of source rocks may be developed in the Offshore Indus Basin.The presence of Miocene mudstones has been proven by drilling to be high-quality source rocks,while the Cretaceous and Paleocene–Eocene mudstones are potential source rocks.Tectonic-lithologic traps are developed in the northwestern part of the basin affected by the strike-slip faults along Murray Ridge.Furthermore,the Cretaceous and Paleocene–Eocene source rocks are thick and are slightly affected by volcanic activities.Therefore,it can be inferred that the northwestern part of Offshore Indus Basin enjoys good prospects of oil and gas resources.展开更多
To meet the requirements of marine natural gas hydrate exploitation,it is necessary to improve the penetration of completion sand control string in the large curvature borehole.In this study,large curvature test wells...To meet the requirements of marine natural gas hydrate exploitation,it is necessary to improve the penetration of completion sand control string in the large curvature borehole.In this study,large curvature test wells were selected to carry out the running test of sand control string with pre-packed screen.Meanwhile,the running simulation was performed by using the Landmark software.The results show that the sand control packer and screen can be run smoothly in the wellbore with a dogleg angle of more than 20°/30 m and keep the structure stable.Additionally,the comprehensive friction coefficient is 0.4,under which and the simulation shows that the sand control string for hydrate exploitation can be run smoothly.These findings have important guiding significance for running the completion sand control string in natural gas hydrate exploitation.展开更多
Sedimentary process research is of great significance for understanding the distribution and characteristics of sediments.Through the detailed observation and measurement of the Sangyuan outcrop in Luanping Basin,this...Sedimentary process research is of great significance for understanding the distribution and characteristics of sediments.Through the detailed observation and measurement of the Sangyuan outcrop in Luanping Basin,this paper studies the depositional process of the hyperpycnal flow deposits,and divides their depositional process into three phases,namely,acceleration,erosion and deceleration.In the acceleration phase,hyperpycnal flow begins to enter the basin nearby,and then speeds up gradually.Deposits developed in the acceleration phase are reverse.In addition,the original deposits become unstable and are taken away by hyperpycnal flows under the eroding force.As a result,there are a lot of mixture of red mud pebbles outside the basin and gray mud pebbles within the basin.In the erosion phase,the reverse deposits are eroded and become thinner or even disappear.Therefore,no reverse grading characteristic is found in the proximal major channel that is closer to the source,but it is still preserved in the middle branch channel that is far from the source.After entering the deceleration phase,normally grading deposits appear and cover previous deposits.The final deposits in the basin are special.Some are reverse,and others are normal.They are superimposed with each other under the action of hyperpycnal flow.The analysis of the Sangyuan outcrop demonstrates the sedimentary process and distribution of hyperpycnites,and reasonably explain the sedimentary characteristics of hyperpycnites.It is helpful to the prediction of oil and gas exploration targets in gravity flow deposits.展开更多
Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin,which is on the northern continental slope of the South China Sea.Gas hydrates in this area have been intensively investigated,achieving a wide cover...Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin,which is on the northern continental slope of the South China Sea.Gas hydrates in this area have been intensively investigated,achieving a wide coverage of the three-dimensional seismic survey,a large number of boreholes,and detailed data of the seismic survey,logging,and core analysis.In the beginning of 2020,China has successfully conducted the second offshore production test of gas hydrates in this area.In this paper,studies were made on the structure of the hydrate system for the production test,based on detailed logging data and core analysis of this area.As to the results of nuclear magnetic resonance(NMR)logging and sonic logging of Well GMGS6-SH02 drilled during the GMGS6 Expedition,the hydrate system on which the production well located can be divided into three layers:(1)207.8–253.4 mbsf,45.6 m thick,gas hydrate layer,with gas hydrate saturation of 0–54.5%(31%av.);(2)253.4–278 mbsf,24.6 m thick,mixing layer consisting of gas hydrates,free gas,and water,with gas hydrate saturation of 0–22%(10%av.)and free gas saturation of 0–32%(13%av.);(3)278–297 mbsf,19 m thick,with free gas saturation of less than 7%.Moreover,the pore water freshening identified in the sediment cores,taken from the depth below the theoretically calculated base of methane hydrate stability zone,indicates the occurrence of gas hydrate.All these data reveal that gas hydrates,free gas,and water coexist in the mixing layer from different aspects.展开更多
The permeability of a natural gas hydrate reservoir is a critical parameter associated with gas hydrate production.Upon producing gas from a hydrate reservoir via depressurization,the permeability of sediments changes...The permeability of a natural gas hydrate reservoir is a critical parameter associated with gas hydrate production.Upon producing gas from a hydrate reservoir via depressurization,the permeability of sediments changes in two ways with hydrate dissociation,increasing with more pore space released from hydrate and decreasing due to pore compression by stronger effective stress related to depressurization.In order to study the evolution of sediment permeability during the production process with the depressurization method,an improved pore network model(PNM)method is developed to establish the permeability change model.In this model,permeability change induced by hydrate dissociation is investigated under hydrate occurrence morphology of pore filling and grain coating.The results obtained show that hydrate occurrence in sediment pore is with significant influence on permeability change.Within a reasonable degree of pore compression in field trial,the effect of pore space release on the reservoir permeability is greater than that of pore compression.The permeability of hydrate containing sediments keeps increasing in the course of gas production,no matter with what hydrate occurrence in sediment pore.展开更多
The Sichuan Basin is one of the vital basins in China,boasting abundant hydrocarbon reservoirs.To clarify the intensity of the tectonic stress field of different tectonic episodes since the Mesozoic and to identify th...The Sichuan Basin is one of the vital basins in China,boasting abundant hydrocarbon reservoirs.To clarify the intensity of the tectonic stress field of different tectonic episodes since the Mesozoic and to identify the regional dynamic background of different tectonic movements in the Sichuan Basin and its adjacent areas,the characteristics of the acoustic emission in rocks in different strata of these areas were researched in this paper.Meanwhile,the tectonic stress magnitude in these areas since the Mesozoic was restored.The laws state that the tectonic stress varied with depth was revealed,followed by the discussion of the influence of structural stress intensity on structural patterns in different tectonic episodes.These were conducted based on the paleostress measurement by acoustic emission method and the inversion principle of the stress fields in ancient periods and the present,as well as previous research achievements.The results of this paper demonstrate that the third episode of Yanshanian Movement(Yanshanian III)had the maximum activity intensity and tremendously influenced the structural pattern in the study area.The maximum horizontal principal stress of Yanshanian III varied with depth as follows:0.0168 x+37.001(MPa),R^2=0.8891.The regional structural fractures were mainly formed in Yanshanian III in Xujiahe Formation,west Sichuan Basin,of which the maximum paleoprincipal stress ranging from 85.1 MPa to 120.1 MPa.In addition,the law stating the present maximum horizontal principal stress varies with depth was determined to be 0.0159 x+10.221(MPa),R^2=0.7868 in Wuling Mountain area.Meanwhile,it was determined to be 0.0221 x+9.4733(MPa),R^2=0.9121 in the western part of Xuefeng Mountain area and 0.0174 x+10.247(MPa),R^2=0.8064 in the whole study area.These research results will not only provide data for the simulation of stress field,the evaluation of deformation degree,and the prediction of structural fractures,but also offer absolute geological scientific bases for the elevation of favorable shale gas preservation.展开更多
In order to evaluate the geological characteristics and gas-bearing factors of Niutitang Formation within the Lower Cambrian of northern Guizhou,the Huangping area located at the southern edge of the ancient uplift be...In order to evaluate the geological characteristics and gas-bearing factors of Niutitang Formation within the Lower Cambrian of northern Guizhou,the Huangping area located at the southern edge of the ancient uplift belt of Xuefeng Mountain was selected as the target area,and Well Huangdi 1 was drilled for the geological survey of shale gas.Through geological background analysis and well logging and laboratory analysis such as organic geochemical test,gas content analysis,isothermal adsorption,and specific surface area experiments on Well Huangdi 1,the results show that the Niutitang Formation is a deep-water shelf,trough-like folds and thrust fault.The thickness of black shale is 119.95 m,of which carbonaceous shale is 89.6 m.The average value of organic carbon content is 3.55%,kerogen vitrinite reflectance value is 2.37% and kerogen type is sapropel-type.The brittle mineral content is 51%(quartz 38%),clay mineral content is 38.3%.The value of porosity and permeability are 0.5%and 0.0014 mD,which the reservoir of the Niutitang Formation belongs to low permeability with characteristics of ultra-low porosity.The gas content is 0.09‒1.31 m^3/t with a high-value area and a second high-value area.By comparing with the geological parameters of adjacent wells in the adjacent area,the accumulation model of“sediment control zone,Ro control zone,structure controlling reservoir”in the study area is proposed.Therefore,deep-water shelf-slope facies,Ro is between high maturity-early stage of overmaturity and well-preserved zones in the Niutitang Formation in this area are favorable direction for the next step of shale gas exploration.展开更多
Various factors controlling the accumulation of natural gas hydrates(NGHs)form various enrichment and accumulation modes through organic combination.This study mainly analyzes the geological and geophysical characteri...Various factors controlling the accumulation of natural gas hydrates(NGHs)form various enrichment and accumulation modes through organic combination.This study mainly analyzes the geological and geophysical characteristics of the NGHs occurrence in the uplifts and their slope zones within the deep-water area in the Qiongdongnan(QDN)Basin(also referred to as the study area).Furthermore,it investigates the dominant governing factors and models of NGHs migration and accumulation in the study area.The results are as follows.(1)The uplifts and their slope zones in the study area lie in the dominant pressure-relief direction of fluids in central hydrocarbon-rich sags in the area,which provide sufficient gas sources for the NGHs accumulation and enrichment through pathways such as gas chimneys and faults.(2)The top and flanks of gas chimneys below the bottom simulating reflectors(BSRs)show high-amplitude seismic reflections and pronounced transverse charging of free gas,indicating the occurrence of a large amount of gas accumulation at the heights of the uplifts.(3)Chimneys,faults,and high-porosity and high-permeability strata,which connect the gas hydrate temperature-pressure stability zones(GHSZs)with thermogenic gas and biogenic gas,form the main hydrate migration system.(4)The reservoir system in the study area comprises sedimentary interlayers consisting of mass transport deposits(MTDs)and turbidites.In addition,the reservoir system has developed fissure-and pore-filling types of hydrates in the pathways.The above well-matched controlling factors of hydrate accumulation enable the uplifts and their slope zones in the study area to become the favorable targets of NGHs exploration.展开更多
North Carnarvon Basin is a gas province with minor oily sweet spots in deepwater area with water depth more than 500 m,which is one of the hot spots of global petroleum exploration for its series of giant hydrocarbon ...North Carnarvon Basin is a gas province with minor oily sweet spots in deepwater area with water depth more than 500 m,which is one of the hot spots of global petroleum exploration for its series of giant hydrocarbon discoveries in recent years.However,the degree of oil and gas exploration in deepwater area is still low,and the conditions for oil and gas accumulation are not clear.Based on the current exploration situation and latest database of fields,applying multidisciplinary analysis of hydrocarbon geology,hydrocarbon accumulation elements and its exploration direction of North Carnarvon Basin in deepwater area are analyzed.The results show that there are three sets of main source rocks in deepwater area of North Carnarvon Basin,which are Triassic marine shale in Locker Formation and delta coal-bearing mudstone with thin carbonaceous mudstone in Mungaroo Formation,Lower–Middle Jurassic paralic carbargilite and coal measure strata in Athol Formation and Murat Formation,Cretaceous delta mudstone in Barrow Group and marine shale in Muderong Formation.Most source rock samples show gas-prone capability.The coarse sandstone of delta facies in Middle–Upper Triassic Mungaroo Formation is the most important reservoir in deepwater area,Lower Cretaceous Barrow Group deep-water gravity flow or underwater fan turbidite sandstone is the secondly main reservoir.Lower Cretaceous marine shale in Muderong Formation is most important regional caprock.Triassic mudstone in Mungaroo Formation is an important interlayer caprock in deepwater area.There are two main reservoir accumulation assemblages in deepwater area,one is Triassic structural-unconformity plane reservoir accumulation assemblage of Locker Formation to Mungaroo Formation,and the other is Lower–Middle Jurassic Athol Formation and Murat Formation–Lower Cretaceous stratigraphic lithology-structural reservoir accumulation assemblage of Barrow Group to Muderong Formation.There are three main control factors of hydrocarbon Accumulation:One is coupling of source and seal control hydrocarbon distribution area,the second is multi-stage large wave dominated deltas dominate accumulation zone,the third is direction of hydrocarbon migration and accumulation in hydrocarbon-rich generation depression was controlled by overpressure.The south of Exmouth platform in deepwater area is adjacent to hydrocarbon rich depression zone,reservoir assemblage is characterized by“near source rocks,excellent reservoir facies,high position and excellent caprocks”,which is the main battlefield of deepwater oil and gas exploration in North Carnarvon Basin at present.There are a lot of fault block traps in the northern structural belt of Exmouth platform,and the favorable sedimentary facies belt at the far end of delta plain in Mungaroo Formation is widely distributed,which is the next favorable exploration zone.The Lower Cretaceous,which is located at the concave edge uplift adjacent to the investigator depression and the Exmouth platform,also has a certain exploration prospect in northwest of deepwater area.展开更多
Traditional suction anchor technology is mainly used in the fields of subsea structure bearing foundations,single-point mooring systems and offshore wind power.It is characterized by providing sufficient lateral and v...Traditional suction anchor technology is mainly used in the fields of subsea structure bearing foundations,single-point mooring systems and offshore wind power.It is characterized by providing sufficient lateral and vertical bearing capacities and lateral bending moment.The anchor structure of a traditional suction anchor structure is improved with wellhead suction anchor technology,where a central pipe is added as a channel for drilling and completion operations.To solve the technical problems of a low wellhead bearing capacity,shallow built-up depth,and limited application of conductor jetting in the second production test of natural gas hydrates(NGHs)in the South China Sea(SCS),the China Geological Survey(CGS)took the lead in independently designing and manufacturing a wellhead suction anchor,which fulfilled the requirements of the production test.This novel anchor was successfully implemented in the second production test for the first time,providing a stable wellhead foundation for the success of the second production test of NGHs in the SCS.展开更多
The composition of gas released under vacuum by crushing from the gas shale of Longmaxi Formation in Upper Yangtze Plate,Southern China was systematically investigated in this study.The effect of residual gas release ...The composition of gas released under vacuum by crushing from the gas shale of Longmaxi Formation in Upper Yangtze Plate,Southern China was systematically investigated in this study.The effect of residual gas release on pore structures was checked using low-pressure nitrogen adsorption techniques.The influence of particle size on the determination of pore structure characteristics was considered.Using the Frenkel-Halsey-Hill method from low-pressure nitrogen adsorption data,the fractal dimensions were identified at relative pressures of 0‒0.5 and 0.5‒1 as D1 and D2,respectively,and the evolution of fractal features related to gas release was also discussed.The results showed that a variety component of residual gas was released from all shale samples,containing hydrocarbon gas of CH4(29.58%‒92.53%),C2H6(0.97%‒2.89%),C3H8(0.01%‒0.65%),and also some non-hydrocarbon gas such as CO2(3.54%‒67.09%)and N2(1.88%‒8.07%).The total yield of residual gas was in a range from 6.1μL/g to 17.0μL/g related to rock weight.The geochemical and mineralogical analysis suggested that the residual gas yield was positively correlated with quartz(R^2=0.5480)content.The residual gas released shale sample has a higher surface area of 17.20‒25.03 m^2/g and the nitrogen adsorption capacity in a range of 27.32‒40.86 ml/g that is relatively higher than the original samples(with 9.22‒16.30 m^2/g and 10.84‒17.55 ml/g).Clearer hysteresis loop was observed for the original shale sample in nitrogen adsorption-desorption isotherms than residual gas released sample.Pore structure analysis showed that the proportions of micro-,meso-and macropores were changed as micropores decreased while meso-and macropores increased.The fractal dimensions D1 were in range from 2.5466 to 2.6117 and D2 from 2.6998 to 2.7119 for the residual gas released shale,which is smaller than the original shale.This factor may indicate that the pore in residual gas released shale was more homogeneous than the original shale.The results indicated that both residual gas and their pore space have few contributions to shale gas production and effective reservoir evaluation.The larger fragments samples of granular rather than powdery smaller than 60 mesh fraction of shale seem to be better for performing effective pore structure analysis to the Longmaxi shale.展开更多
How natural gas hydrates nucleate and grow is a crucial scientific question.The research on it will help solve practical problems encountered in hydrate accumulation,development,and utilization of hydrate related tech...How natural gas hydrates nucleate and grow is a crucial scientific question.The research on it will help solve practical problems encountered in hydrate accumulation,development,and utilization of hydrate related technology.Due to its limitations on both spatial and temporal dimensions,experiment cannot fully explain this issue on a micro-scale.With the development of computer technology,molecular simulation has been widely used in the study of hydrate formation because it can observe the nucleation and growth process of hydrates at the molecular level.This review will assess the recent progresses in molecular dynamics simulation of hydrate nucleation and growth,as well as the enlightening significance of these developments in hydrate applications.At the same time,combined with the problems encountered in recent hydrate trial mining and applications,some potential directions for molecular simulation in the research of hydrate nucleation and growth are proposed,and the future of molecular simulation research on hydrate nucleation and growth is prospected.展开更多
The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole p...The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole production activities in the process of oil and gas development.The authors applied the DAS system in a gas production well in the South China Sea for in situ monitoring of the whole wellbore for the first time and obtained the distributed acoustic signals along the whole wellbore.These signals can clearly distinguish the vertical section,curve section,and horizontal production section.The collected acoustic signal with the frequency of approximately 50 Hz caused by the electric submersible pump exhibit a signal-to-noise ratio higher than 27 dB.By analyzing the acoustic signals in the production section,it can be located the layers with high gas production rates.Once an accurate physical model is built in the future,the gas production profile will be obtained.In addition,the DAS system can track the trajectory of downhole tools in the wellbore to guide the operation.Through the velocity analysis of the typical signals,the type of fluids in the wellbore can be distinguished.The successful application of the system provides a promising whole wellbore acoustic monitoring tool for the production of marine gas hydrate,with a good application prospect.展开更多
Natural gas hydrates(NGHs)are globally recognized as an important type of strategic alternative energy due to their high combustion efficiency,cleanness,and large amounts of resources.The NGHs reservoirs in the South ...Natural gas hydrates(NGHs)are globally recognized as an important type of strategic alternative energy due to their high combustion efficiency,cleanness,and large amounts of resources.The NGHs reservoirs in the South China Sea(SCS)mainly consist of clayey silts.NGHs reservoirs of this type boast the largest distribution range and the highest percentage of resources among NGHs reservoirs in the world.However,they are more difficult to exploit than sandy reservoirs.The China Geological Survey successfully carried out two NGHs production tests in the Shenhu Area in the northern SCS in 2017 and 2020,setting multiple world records,such as the longest gas production time,the highest total gas production,and the highest average daily gas production,as well as achieving a series of innovative theoretical results.As suggested by the in-depth research on the two production tests,key factors that restrict the gas production efficiency of hydrate dissociation include reservoir structure characterization,hydrate phase transition,multiphase seepage and permeability enhancement,and the simulation and regulation of production capacity,among which the hydrate phase transition and seepage mechanism are crucial.Study results reveal that the hydrate phase transition in the SCS is characterized by low dissociation temperature,is prone to produce secondary hydrates in the reservoirs,and is a complex process under the combined effects of the seepage,stress,temperature,and chemical fields.The multiphase seepage is controlled by multiple factors such as the physical properties of unconsolidated reservoirs,the hydrate phase transition,and exploitation methods and is characterized by strong methane adsorption,abrupt changes in absolute permeability,and the weak flow capacity of gas.To ensure the long-term,stable,and efficient NGHs exploitation in the SCS,it is necessary to further enhance the reservoir seepage capacity and increase gas production through secondary reservoir stimulation based on initial reservoir stimulation.With the constant progress in the NGHs industrialization,great efforts should be made to tackle the difficulties,such as determining the micro-change in temperature and pressure,the response mechanisms of material-energy exchange,the methods for efficient NGHs dissociation,and the boundary conditions for the formation of secondary hydrates in the large-scale,long-term gas production.展开更多
Great advancement has been made on natural gas hydrates exploration and test production in the northern South China Sea.However,there remains a lot of key questions yet to be resolved,particularly about the mechanisms...Great advancement has been made on natural gas hydrates exploration and test production in the northern South China Sea.However,there remains a lot of key questions yet to be resolved,particularly about the mechanisms and the controls of gas hydrates enrichment.Numerical simulaution would play signficant role in addressing these questions.This study focused on the gas hydrate exploration in the Shenhu Area,Northern South China Sea.Based on the newly obtained borehole and multichannel reflection seismic data,the authors conducted an integrated 3D basin modeling study on gas hydrate.The results indicate that the Shenhu Area has favorable conditions for gas hydrate accumulation,such as temperature,pressure,hydrocarbon source,and tectonic setting.Gas hydrates are most concentrated in the Late Miocene strata,particularly in the structual highs between the Baiyun Sag and the Liwan Sag,and area to the south of it.It also proved the existence of overpressure in the main sag of source rocks,which was subject to compaction disequilibrium and hydrocarbon generation.It also shown that the regional fault activity is not conducive to gas hydrate accumulation due to excess gas seepage.The authors conjecture that fault activity may slightly weaken overpressure for the positive effect of hydrocarbon expulsion and areas lacking regional fault activity have better potential.展开更多
Natural gas hydrates(NGHs)are a new type of clean energy with great development potential.However,it is urgent to achieve safe and economical NGHs development and utilization.This study established a physical model of...Natural gas hydrates(NGHs)are a new type of clean energy with great development potential.However,it is urgent to achieve safe and economical NGHs development and utilization.This study established a physical model of the study area using the FLAC^(3D) software based on the key parameters of the NGHs production test area in the South China Sea,including the depressurization method,and mechanical parameters of strata,NGHs occurrence characteristics,and the technological characteristics of horizontal wells.Moreover,this study explored the law of influences of the NGHs dissociation range on the stability of the overburden strata and the casing structure of a horizontal well.The results are as follows.With the dissociation of NGHs,the overburden strata of the NGHs dissociation zone subsided and formed funnelshaped zones and then gradually stabilized.However,the upper interface of the NGHs dissociation zone showed significant redistribution and discontinuity of stress.Specifically,distinct stress concentration and corresponding large deformation occurred in the build-up section of the horizontal well,which was thus prone to suffering shear failure.Moreover,apparent end effects occurred at the end of the horizontal well section and might cause the deformation and failure of the casing structure.Therefore,it is necessary to take measures in the build-up section and at the end of the horizontal section of the horizontal well to prevent damage and ensure the wellbore safety in the long-term NGHs exploitation.展开更多
基金supported by the projects of the China Geological Survey(DD20230043,DD20240048)the project of the National Natural Science Foundation of China(42102123)。
文摘Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment.
基金funded by projects of the National Natural Science Foundation of China(91955204,42241202)the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK080301)a project entitled Tectonics,Sedimentation,Evolution,and Basic Petroleum Geology of the Qiangtang Basin(2021DJ0801)of the Forward-looking Basic Subjects of PetroChina’s 14th Five-Year Plan.
文摘The Qiangtang Basin of the Tibetan Plateau,located in the eastern Tethys tectonic domain,is the largest new marine petroliferous region for exploration in China.The scientific drilling project consisting primarily of well QK-1 and its supporting shallow boreholes for geological surveys(also referred to as the Project)completed in recent years contributes to a series of new discoveries and insights into the oil and gas preservation conditions and source rock evaluation of the Qiangtang Basin.These findings differ from previous views that the Qiangtang Basin has poor oil and gas preservation conditions and lacks high-quality source rocks.As revealed by well QK-1 and its supporting shallow boreholes in the Project,the Qiangtang Basin hosts two sets of high-quality regional seals,namely an anhydrite layer in the Quemo Co Formation and the gypsum-bearing mudstones in the Xiali Formation.Moreover,the Qiangtang Basin has favorable oil and gas preservation conditions,as verified by the comprehensive study of the sealing capacity of seals,basin structure,tectonic uplift,magmatic activity,and groundwater motion.Furthermore,the shallow boreholes have also revealed that the Qiangtang Basin has high-quality hydrocarbon source rocks in the Upper Triassic Bagong Formation,which are thick and widely distributed according to the geological and geophysical data.In addition,the petroleum geological conditions,such as the type,abundance,and thermal evolution of organic matter,indicate that the Qiangtang Basin has great hydrocarbon-generating potential.
基金Supported by the Basic Science Center Project of National Natural Science Foundation of China(72088101)National Natural Science Funded Project(52074345)CNPC Scientific Research and Technology Development Project(2020D-5001-21)。
文摘This paper summarizes the important progress in the field of oil and gas production engineering during the"Thirteenth Five-Year Plan"period of China,analyzes the challenges faced by the current oil and gas production engineering in terms of technological adaptability,digital construction,energy-saving and emission reduction,and points out the future development direction.During the"Thirteenth Five-Year Plan"period,series of important progresses have been made in five major technologies,including separated-layer injection,artificial lift,reservoir stimulation,gas well de-watering,and workover,which provide key technical support for continuous potential tapping of mature oilfields and profitable production of new oilfields.Under the current complex international political and economic situation,oil and gas production engineering is facing severe challenges in three aspects:technical difficulty increases in oil and gas production,insignificant improvements in digital transformation,and lack of core technical support for energy-saving and emission reduction.This paper establishes three major strategic directions and implementation paths,including oil stabilization and gas enhancement,digital transformation,and green and low-carbon development.Five key research areas are listed including fine separated-layer injection technology,high efficiency artificial lift technology,fine reservoir stimulation technology,long term gas well de-watering technology and intelligent workover technology,so as to provide engineering technical support for the transformation,upgrading and high-quality development of China’s oil and gas industry.
基金funded by the shale oil and gas geological survey project in Quemoco sag,Qiangtang Basin of China Geological Survey(DD20221855,DD20230315).
文摘The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important resource base of Daqing oilfield.After years of exploration in the Qijia area,Songliao Basin,NE China,tight oil has been found in the Upper Cretaceous Qingshankou Formation.To work out tight oil’s geological characteristics,taking tight oil in Gaotaizi oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example,this paper systematically analyzed the geological characteristics of unconventional tight oil in Gao3 and Gao4 layers of the Qijia area,based on the data of the geological survey,well drilling journey,well logging,and test.It is that three sets of hydrocarbon source rocks(K2qn1,K2qn2+3,and K2n1)develop in the examined area,and exhibit excellent type I and II kerogens,high organic matter abundance,and moderate maturity.The reservoir is generally composed of thin-bedded mudstone,siltstone,and sandstone,and presents poor porosity(average 8.5 vol.%)and air permeability(average 4 mD).The main reservoir space primarily includes intergranular pores,secondary soluble pores,and intergranular soluble pores.Three types of orifice throats were identified,namely fine throat,extra-fine throat,and micro-fine throat.The siltstone is generally oil-bearing,the reservoirs with slime and calcium become worse oil-bearing,and the mudstone has no obvious oil-bearing characteristics.The brittleness indices of the sandstone in the tight oil reservoir range from 40%to 60%,and those of the mudstone range from 40%to 45%,indicating a better brittleness of the tight oil reservoir.Based on the study of typical core hole data,this paper gives a comprehensive evaluation of the properties of the tight oil and establishes a tight oil single well composite bar chart as well as the initial evaluation system with the core of properties in the tight oil reservoir.This study has theoretical guiding significance and practical application value for tight oil exploration and evaluation in the Qijia area.
基金This work was financially supported by National Natural Science Foundation of China(91858208,41406080,42076069)China Geological Survey(DD20190581).
文摘Oil and gas resources are short in Pakistan and no commercially viable oil and gas sources have been yet discovered in its offshore areas up to now.In this study,the onshore-offshore stratigraphic correlation and seismic data interpretation were conducted to determine the oil and gas resource potential in the Offshore Indus Basin,Pakistan.Based on the comprehensive analysis of the results and previous data,it is considered that the Cretaceous may widely exist and three sets of source rocks may be developed in the Offshore Indus Basin.The presence of Miocene mudstones has been proven by drilling to be high-quality source rocks,while the Cretaceous and Paleocene–Eocene mudstones are potential source rocks.Tectonic-lithologic traps are developed in the northwestern part of the basin affected by the strike-slip faults along Murray Ridge.Furthermore,the Cretaceous and Paleocene–Eocene source rocks are thick and are slightly affected by volcanic activities.Therefore,it can be inferred that the northwestern part of Offshore Indus Basin enjoys good prospects of oil and gas resources.
基金supported jointly by one of the major projects of Basic and Applied Basic Research in Guangdong Province“Key Basic Theory Research for Natural Gas Hydrate Trial Production in Shenhu Pilot Test Area”(2020B0301030003)the project from Southern Marine Science&Engineering Guangdong Laboratory Guangzhou City“Research on New Closed Circulation Drilling Technology without Riser”(GML2019ZD0501)the special project for hydrate from China Geological Survey“Trial Production Implementation for Natural Gas Hydrate in Shenhu Pilot Test Area”(DD20190226)。
文摘To meet the requirements of marine natural gas hydrate exploitation,it is necessary to improve the penetration of completion sand control string in the large curvature borehole.In this study,large curvature test wells were selected to carry out the running test of sand control string with pre-packed screen.Meanwhile,the running simulation was performed by using the Landmark software.The results show that the sand control packer and screen can be run smoothly in the wellbore with a dogleg angle of more than 20°/30 m and keep the structure stable.Additionally,the comprehensive friction coefficient is 0.4,under which and the simulation shows that the sand control string for hydrate exploitation can be run smoothly.These findings have important guiding significance for running the completion sand control string in natural gas hydrate exploitation.
基金the Scientific research and technology development project of Petro China(2021DJ5303)。
文摘Sedimentary process research is of great significance for understanding the distribution and characteristics of sediments.Through the detailed observation and measurement of the Sangyuan outcrop in Luanping Basin,this paper studies the depositional process of the hyperpycnal flow deposits,and divides their depositional process into three phases,namely,acceleration,erosion and deceleration.In the acceleration phase,hyperpycnal flow begins to enter the basin nearby,and then speeds up gradually.Deposits developed in the acceleration phase are reverse.In addition,the original deposits become unstable and are taken away by hyperpycnal flows under the eroding force.As a result,there are a lot of mixture of red mud pebbles outside the basin and gray mud pebbles within the basin.In the erosion phase,the reverse deposits are eroded and become thinner or even disappear.Therefore,no reverse grading characteristic is found in the proximal major channel that is closer to the source,but it is still preserved in the middle branch channel that is far from the source.After entering the deceleration phase,normally grading deposits appear and cover previous deposits.The final deposits in the basin are special.Some are reverse,and others are normal.They are superimposed with each other under the action of hyperpycnal flow.The analysis of the Sangyuan outcrop demonstrates the sedimentary process and distribution of hyperpycnites,and reasonably explain the sedimentary characteristics of hyperpycnites.It is helpful to the prediction of oil and gas exploration targets in gravity flow deposits.
基金Jointly funded by a major research plan of National Natural Science Foundation of China(51991365)titled“Multi-Field Spatial-Temporal Evolution Laws of Phase Transition and Seepage of Natural Gas Hydrate in Reservoirs”and a geological survey project initiated by China Geological Survey(DD20190226)titled“Implementation of Natural Gas Hydrate Production Test in Pilot Test Area in Shenhu Area”.
文摘Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin,which is on the northern continental slope of the South China Sea.Gas hydrates in this area have been intensively investigated,achieving a wide coverage of the three-dimensional seismic survey,a large number of boreholes,and detailed data of the seismic survey,logging,and core analysis.In the beginning of 2020,China has successfully conducted the second offshore production test of gas hydrates in this area.In this paper,studies were made on the structure of the hydrate system for the production test,based on detailed logging data and core analysis of this area.As to the results of nuclear magnetic resonance(NMR)logging and sonic logging of Well GMGS6-SH02 drilled during the GMGS6 Expedition,the hydrate system on which the production well located can be divided into three layers:(1)207.8–253.4 mbsf,45.6 m thick,gas hydrate layer,with gas hydrate saturation of 0–54.5%(31%av.);(2)253.4–278 mbsf,24.6 m thick,mixing layer consisting of gas hydrates,free gas,and water,with gas hydrate saturation of 0–22%(10%av.)and free gas saturation of 0–32%(13%av.);(3)278–297 mbsf,19 m thick,with free gas saturation of less than 7%.Moreover,the pore water freshening identified in the sediment cores,taken from the depth below the theoretically calculated base of methane hydrate stability zone,indicates the occurrence of gas hydrate.All these data reveal that gas hydrates,free gas,and water coexist in the mixing layer from different aspects.
基金This work was co-supported by the Ministry of Science and Technology of China(2017YFC0307603)the China Geological Survey project(DD20190234).
文摘The permeability of a natural gas hydrate reservoir is a critical parameter associated with gas hydrate production.Upon producing gas from a hydrate reservoir via depressurization,the permeability of sediments changes in two ways with hydrate dissociation,increasing with more pore space released from hydrate and decreasing due to pore compression by stronger effective stress related to depressurization.In order to study the evolution of sediment permeability during the production process with the depressurization method,an improved pore network model(PNM)method is developed to establish the permeability change model.In this model,permeability change induced by hydrate dissociation is investigated under hydrate occurrence morphology of pore filling and grain coating.The results obtained show that hydrate occurrence in sediment pore is with significant influence on permeability change.Within a reasonable degree of pore compression in field trial,the effect of pore space release on the reservoir permeability is greater than that of pore compression.The permeability of hydrate containing sediments keeps increasing in the course of gas production,no matter with what hydrate occurrence in sediment pore.
基金The study associated with this paper was supported by projects of China Geological Survey(DD20190085,DD20160183,1212011120976).
文摘The Sichuan Basin is one of the vital basins in China,boasting abundant hydrocarbon reservoirs.To clarify the intensity of the tectonic stress field of different tectonic episodes since the Mesozoic and to identify the regional dynamic background of different tectonic movements in the Sichuan Basin and its adjacent areas,the characteristics of the acoustic emission in rocks in different strata of these areas were researched in this paper.Meanwhile,the tectonic stress magnitude in these areas since the Mesozoic was restored.The laws state that the tectonic stress varied with depth was revealed,followed by the discussion of the influence of structural stress intensity on structural patterns in different tectonic episodes.These were conducted based on the paleostress measurement by acoustic emission method and the inversion principle of the stress fields in ancient periods and the present,as well as previous research achievements.The results of this paper demonstrate that the third episode of Yanshanian Movement(Yanshanian III)had the maximum activity intensity and tremendously influenced the structural pattern in the study area.The maximum horizontal principal stress of Yanshanian III varied with depth as follows:0.0168 x+37.001(MPa),R^2=0.8891.The regional structural fractures were mainly formed in Yanshanian III in Xujiahe Formation,west Sichuan Basin,of which the maximum paleoprincipal stress ranging from 85.1 MPa to 120.1 MPa.In addition,the law stating the present maximum horizontal principal stress varies with depth was determined to be 0.0159 x+10.221(MPa),R^2=0.7868 in Wuling Mountain area.Meanwhile,it was determined to be 0.0221 x+9.4733(MPa),R^2=0.9121 in the western part of Xuefeng Mountain area and 0.0174 x+10.247(MPa),R^2=0.8064 in the whole study area.These research results will not only provide data for the simulation of stress field,the evaluation of deformation degree,and the prediction of structural fractures,but also offer absolute geological scientific bases for the elevation of favorable shale gas preservation.
基金This research was financially supported by the National Science and Technology Major Project(2016ZX05034)project of China Gelogical Survey(DD20160181).
文摘In order to evaluate the geological characteristics and gas-bearing factors of Niutitang Formation within the Lower Cambrian of northern Guizhou,the Huangping area located at the southern edge of the ancient uplift belt of Xuefeng Mountain was selected as the target area,and Well Huangdi 1 was drilled for the geological survey of shale gas.Through geological background analysis and well logging and laboratory analysis such as organic geochemical test,gas content analysis,isothermal adsorption,and specific surface area experiments on Well Huangdi 1,the results show that the Niutitang Formation is a deep-water shelf,trough-like folds and thrust fault.The thickness of black shale is 119.95 m,of which carbonaceous shale is 89.6 m.The average value of organic carbon content is 3.55%,kerogen vitrinite reflectance value is 2.37% and kerogen type is sapropel-type.The brittle mineral content is 51%(quartz 38%),clay mineral content is 38.3%.The value of porosity and permeability are 0.5%and 0.0014 mD,which the reservoir of the Niutitang Formation belongs to low permeability with characteristics of ultra-low porosity.The gas content is 0.09‒1.31 m^3/t with a high-value area and a second high-value area.By comparing with the geological parameters of adjacent wells in the adjacent area,the accumulation model of“sediment control zone,Ro control zone,structure controlling reservoir”in the study area is proposed.Therefore,deep-water shelf-slope facies,Ro is between high maturity-early stage of overmaturity and well-preserved zones in the Niutitang Formation in this area are favorable direction for the next step of shale gas exploration.
基金funded by the projects initiated by the China Geological Survey(DD20190217 and DD20190230)the key special project for introduced talent team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0102)Guangdong Major project of Basic and Applied Basic Research(2020B0301030003).
文摘Various factors controlling the accumulation of natural gas hydrates(NGHs)form various enrichment and accumulation modes through organic combination.This study mainly analyzes the geological and geophysical characteristics of the NGHs occurrence in the uplifts and their slope zones within the deep-water area in the Qiongdongnan(QDN)Basin(also referred to as the study area).Furthermore,it investigates the dominant governing factors and models of NGHs migration and accumulation in the study area.The results are as follows.(1)The uplifts and their slope zones in the study area lie in the dominant pressure-relief direction of fluids in central hydrocarbon-rich sags in the area,which provide sufficient gas sources for the NGHs accumulation and enrichment through pathways such as gas chimneys and faults.(2)The top and flanks of gas chimneys below the bottom simulating reflectors(BSRs)show high-amplitude seismic reflections and pronounced transverse charging of free gas,indicating the occurrence of a large amount of gas accumulation at the heights of the uplifts.(3)Chimneys,faults,and high-porosity and high-permeability strata,which connect the gas hydrate temperature-pressure stability zones(GHSZs)with thermogenic gas and biogenic gas,form the main hydrate migration system.(4)The reservoir system in the study area comprises sedimentary interlayers consisting of mass transport deposits(MTDs)and turbidites.In addition,the reservoir system has developed fissure-and pore-filling types of hydrates in the pathways.The above well-matched controlling factors of hydrate accumulation enable the uplifts and their slope zones in the study area to become the favorable targets of NGHs exploration.
基金This study was funded by Jiangxi Provincial Natural Science Foundation(20202BABL211019)the National Science and Technology Major Project(2016ZX05026007)+2 种基金the National Major Fundamental Research and Development Project(2009CB219400)Open Fund Project of Key Laboratory of Sedimentary Mineralization and Sedimentary Mineral Resources in Shandong Province(DMSM 2019008)National Natural Science Foundation of China(41502081).
文摘North Carnarvon Basin is a gas province with minor oily sweet spots in deepwater area with water depth more than 500 m,which is one of the hot spots of global petroleum exploration for its series of giant hydrocarbon discoveries in recent years.However,the degree of oil and gas exploration in deepwater area is still low,and the conditions for oil and gas accumulation are not clear.Based on the current exploration situation and latest database of fields,applying multidisciplinary analysis of hydrocarbon geology,hydrocarbon accumulation elements and its exploration direction of North Carnarvon Basin in deepwater area are analyzed.The results show that there are three sets of main source rocks in deepwater area of North Carnarvon Basin,which are Triassic marine shale in Locker Formation and delta coal-bearing mudstone with thin carbonaceous mudstone in Mungaroo Formation,Lower–Middle Jurassic paralic carbargilite and coal measure strata in Athol Formation and Murat Formation,Cretaceous delta mudstone in Barrow Group and marine shale in Muderong Formation.Most source rock samples show gas-prone capability.The coarse sandstone of delta facies in Middle–Upper Triassic Mungaroo Formation is the most important reservoir in deepwater area,Lower Cretaceous Barrow Group deep-water gravity flow or underwater fan turbidite sandstone is the secondly main reservoir.Lower Cretaceous marine shale in Muderong Formation is most important regional caprock.Triassic mudstone in Mungaroo Formation is an important interlayer caprock in deepwater area.There are two main reservoir accumulation assemblages in deepwater area,one is Triassic structural-unconformity plane reservoir accumulation assemblage of Locker Formation to Mungaroo Formation,and the other is Lower–Middle Jurassic Athol Formation and Murat Formation–Lower Cretaceous stratigraphic lithology-structural reservoir accumulation assemblage of Barrow Group to Muderong Formation.There are three main control factors of hydrocarbon Accumulation:One is coupling of source and seal control hydrocarbon distribution area,the second is multi-stage large wave dominated deltas dominate accumulation zone,the third is direction of hydrocarbon migration and accumulation in hydrocarbon-rich generation depression was controlled by overpressure.The south of Exmouth platform in deepwater area is adjacent to hydrocarbon rich depression zone,reservoir assemblage is characterized by“near source rocks,excellent reservoir facies,high position and excellent caprocks”,which is the main battlefield of deepwater oil and gas exploration in North Carnarvon Basin at present.There are a lot of fault block traps in the northern structural belt of Exmouth platform,and the favorable sedimentary facies belt at the far end of delta plain in Mungaroo Formation is widely distributed,which is the next favorable exploration zone.The Lower Cretaceous,which is located at the concave edge uplift adjacent to the investigator depression and the Exmouth platform,also has a certain exploration prospect in northwest of deepwater area.
基金jointly supported by the Natural Gas Hydrate Exploration and Production Test Project of China Geological Survey (DD20221700)Key-Area Research and Development Program of Guangdong Province (2020B1111030003)Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering G uangdong Laboratory (Guangzhou) (GML2019ZD0504)。
文摘Traditional suction anchor technology is mainly used in the fields of subsea structure bearing foundations,single-point mooring systems and offshore wind power.It is characterized by providing sufficient lateral and vertical bearing capacities and lateral bending moment.The anchor structure of a traditional suction anchor structure is improved with wellhead suction anchor technology,where a central pipe is added as a channel for drilling and completion operations.To solve the technical problems of a low wellhead bearing capacity,shallow built-up depth,and limited application of conductor jetting in the second production test of natural gas hydrates(NGHs)in the South China Sea(SCS),the China Geological Survey(CGS)took the lead in independently designing and manufacturing a wellhead suction anchor,which fulfilled the requirements of the production test.This novel anchor was successfully implemented in the second production test for the first time,providing a stable wellhead foundation for the success of the second production test of NGHs in the SCS.
基金This work was financially supported by the National Natural Science Foundation of China(41802158)projects of China Geological Survey(DD20160183,DD20190085)+2 种基金Major State Research Development Program of China(2016YFC0600202)Fundamental Research Funds for Chinese Academy of Geological Sciences(JYYWF20181201)the CGS-CSC Scholarship Fund(201908575013).
文摘The composition of gas released under vacuum by crushing from the gas shale of Longmaxi Formation in Upper Yangtze Plate,Southern China was systematically investigated in this study.The effect of residual gas release on pore structures was checked using low-pressure nitrogen adsorption techniques.The influence of particle size on the determination of pore structure characteristics was considered.Using the Frenkel-Halsey-Hill method from low-pressure nitrogen adsorption data,the fractal dimensions were identified at relative pressures of 0‒0.5 and 0.5‒1 as D1 and D2,respectively,and the evolution of fractal features related to gas release was also discussed.The results showed that a variety component of residual gas was released from all shale samples,containing hydrocarbon gas of CH4(29.58%‒92.53%),C2H6(0.97%‒2.89%),C3H8(0.01%‒0.65%),and also some non-hydrocarbon gas such as CO2(3.54%‒67.09%)and N2(1.88%‒8.07%).The total yield of residual gas was in a range from 6.1μL/g to 17.0μL/g related to rock weight.The geochemical and mineralogical analysis suggested that the residual gas yield was positively correlated with quartz(R^2=0.5480)content.The residual gas released shale sample has a higher surface area of 17.20‒25.03 m^2/g and the nitrogen adsorption capacity in a range of 27.32‒40.86 ml/g that is relatively higher than the original samples(with 9.22‒16.30 m^2/g and 10.84‒17.55 ml/g).Clearer hysteresis loop was observed for the original shale sample in nitrogen adsorption-desorption isotherms than residual gas released sample.Pore structure analysis showed that the proportions of micro-,meso-and macropores were changed as micropores decreased while meso-and macropores increased.The fractal dimensions D1 were in range from 2.5466 to 2.6117 and D2 from 2.6998 to 2.7119 for the residual gas released shale,which is smaller than the original shale.This factor may indicate that the pore in residual gas released shale was more homogeneous than the original shale.The results indicated that both residual gas and their pore space have few contributions to shale gas production and effective reservoir evaluation.The larger fragments samples of granular rather than powdery smaller than 60 mesh fraction of shale seem to be better for performing effective pore structure analysis to the Longmaxi shale.
基金jointly supported by Pilot National Laboratory for Marine Science and Technology (Qingdao)the IGGCAS (IGGCAS-201903 and SZJJ201901)the Chinese Academy of Sciences (ZDBSLY-DQC003)。
文摘How natural gas hydrates nucleate and grow is a crucial scientific question.The research on it will help solve practical problems encountered in hydrate accumulation,development,and utilization of hydrate related technology.Due to its limitations on both spatial and temporal dimensions,experiment cannot fully explain this issue on a micro-scale.With the development of computer technology,molecular simulation has been widely used in the study of hydrate formation because it can observe the nucleation and growth process of hydrates at the molecular level.This review will assess the recent progresses in molecular dynamics simulation of hydrate nucleation and growth,as well as the enlightening significance of these developments in hydrate applications.At the same time,combined with the problems encountered in recent hydrate trial mining and applications,some potential directions for molecular simulation in the research of hydrate nucleation and growth are proposed,and the future of molecular simulation research on hydrate nucleation and growth is prospected.
基金jointly supported by the Science and Technology Program of Guangzhou (202103040003)the offshore NGHs production test projects under the Marine Geological Survey Program initiated by the China Geological Survey (DD20190226, DD20190218 and DD20221706)+2 种基金the Key Program of Marine Economy Development Special Foundation of Department of Natural Resources of Guangdong Province (GDNRC [2020] 045)the financial support from China Geological Survey (DD20221703)the National Natural Science Foundation of China (NSFC) (6210030553)。
文摘The distributed acoustic sensor(DAS)uses a single optical cable as the sensing unit,which can capture the acoustic and vibration signals along the optical cable in real-time.So it is suitable for monitoring downhole production activities in the process of oil and gas development.The authors applied the DAS system in a gas production well in the South China Sea for in situ monitoring of the whole wellbore for the first time and obtained the distributed acoustic signals along the whole wellbore.These signals can clearly distinguish the vertical section,curve section,and horizontal production section.The collected acoustic signal with the frequency of approximately 50 Hz caused by the electric submersible pump exhibit a signal-to-noise ratio higher than 27 dB.By analyzing the acoustic signals in the production section,it can be located the layers with high gas production rates.Once an accurate physical model is built in the future,the gas production profile will be obtained.In addition,the DAS system can track the trajectory of downhole tools in the wellbore to guide the operation.Through the velocity analysis of the typical signals,the type of fluids in the wellbore can be distinguished.The successful application of the system provides a promising whole wellbore acoustic monitoring tool for the production of marine gas hydrate,with a good application prospect.
基金funded by a key project of the National Natural Science Foundation of China entitled“Multi-Field Spatio-Temporal Evolutionary Pattern of Hydrate Phase Transition and Seepage of NGHs Reservoirs”(51991365)。
文摘Natural gas hydrates(NGHs)are globally recognized as an important type of strategic alternative energy due to their high combustion efficiency,cleanness,and large amounts of resources.The NGHs reservoirs in the South China Sea(SCS)mainly consist of clayey silts.NGHs reservoirs of this type boast the largest distribution range and the highest percentage of resources among NGHs reservoirs in the world.However,they are more difficult to exploit than sandy reservoirs.The China Geological Survey successfully carried out two NGHs production tests in the Shenhu Area in the northern SCS in 2017 and 2020,setting multiple world records,such as the longest gas production time,the highest total gas production,and the highest average daily gas production,as well as achieving a series of innovative theoretical results.As suggested by the in-depth research on the two production tests,key factors that restrict the gas production efficiency of hydrate dissociation include reservoir structure characterization,hydrate phase transition,multiphase seepage and permeability enhancement,and the simulation and regulation of production capacity,among which the hydrate phase transition and seepage mechanism are crucial.Study results reveal that the hydrate phase transition in the SCS is characterized by low dissociation temperature,is prone to produce secondary hydrates in the reservoirs,and is a complex process under the combined effects of the seepage,stress,temperature,and chemical fields.The multiphase seepage is controlled by multiple factors such as the physical properties of unconsolidated reservoirs,the hydrate phase transition,and exploitation methods and is characterized by strong methane adsorption,abrupt changes in absolute permeability,and the weak flow capacity of gas.To ensure the long-term,stable,and efficient NGHs exploitation in the SCS,it is necessary to further enhance the reservoir seepage capacity and increase gas production through secondary reservoir stimulation based on initial reservoir stimulation.With the constant progress in the NGHs industrialization,great efforts should be made to tackle the difficulties,such as determining the micro-change in temperature and pressure,the response mechanisms of material-energy exchange,the methods for efficient NGHs dissociation,and the boundary conditions for the formation of secondary hydrates in the large-scale,long-term gas production.
基金funded by Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0201,GML2019ZD0104)Finance Science and Technology Project of Hainan Province(ZDKJ202019).
文摘Great advancement has been made on natural gas hydrates exploration and test production in the northern South China Sea.However,there remains a lot of key questions yet to be resolved,particularly about the mechanisms and the controls of gas hydrates enrichment.Numerical simulaution would play signficant role in addressing these questions.This study focused on the gas hydrate exploration in the Shenhu Area,Northern South China Sea.Based on the newly obtained borehole and multichannel reflection seismic data,the authors conducted an integrated 3D basin modeling study on gas hydrate.The results indicate that the Shenhu Area has favorable conditions for gas hydrate accumulation,such as temperature,pressure,hydrocarbon source,and tectonic setting.Gas hydrates are most concentrated in the Late Miocene strata,particularly in the structual highs between the Baiyun Sag and the Liwan Sag,and area to the south of it.It also proved the existence of overpressure in the main sag of source rocks,which was subject to compaction disequilibrium and hydrocarbon generation.It also shown that the regional fault activity is not conducive to gas hydrate accumulation due to excess gas seepage.The authors conjecture that fault activity may slightly weaken overpressure for the positive effect of hydrocarbon expulsion and areas lacking regional fault activity have better potential.
基金funded by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0307)the gas hydrate program initiated by the China Geological Survey(DD20190218)the project of the National Natural Science Foundation of China(11872365).
文摘Natural gas hydrates(NGHs)are a new type of clean energy with great development potential.However,it is urgent to achieve safe and economical NGHs development and utilization.This study established a physical model of the study area using the FLAC^(3D) software based on the key parameters of the NGHs production test area in the South China Sea,including the depressurization method,and mechanical parameters of strata,NGHs occurrence characteristics,and the technological characteristics of horizontal wells.Moreover,this study explored the law of influences of the NGHs dissociation range on the stability of the overburden strata and the casing structure of a horizontal well.The results are as follows.With the dissociation of NGHs,the overburden strata of the NGHs dissociation zone subsided and formed funnelshaped zones and then gradually stabilized.However,the upper interface of the NGHs dissociation zone showed significant redistribution and discontinuity of stress.Specifically,distinct stress concentration and corresponding large deformation occurred in the build-up section of the horizontal well,which was thus prone to suffering shear failure.Moreover,apparent end effects occurred at the end of the horizontal well section and might cause the deformation and failure of the casing structure.Therefore,it is necessary to take measures in the build-up section and at the end of the horizontal section of the horizontal well to prevent damage and ensure the wellbore safety in the long-term NGHs exploitation.