A gas migration controlling equation was formulated based on the characteristics of the dual pore–fracture media of coal mass and in consideration of the matrix exchange between pores and fractures.A model of permeab...A gas migration controlling equation was formulated based on the characteristics of the dual pore–fracture media of coal mass and in consideration of the matrix exchange between pores and fractures.A model of permeability dynamic evolution was established by analyzing the variation in effective stress during gas drainage and the action mechanism of the effect of coal matrix desorption on porosity and fracture in the coal body.A coupling model can then be obtained to characterize gas compressibility and coal deformability under the gas–solid coupling of loading coal.In addition,a 3D model of boreholes was established and solved for gas drainage based on the relevant physical parameters of real mines.The comparison and analysis results for the law of gas migration and the evolution of coal body permeability around the boreholes before and after gas extraction between the dual media and the single-seepage field models can provide a theoretical basis for further research on the action mechanism of gas drainage.展开更多
The palaeo-atmospheric CO2 concentration (pCOz) variation in the Yumen, Gansu Province during the middle Cretaceous has been reconstructed using the newly established plant photosynthetic gas exchange mechanistic mo...The palaeo-atmospheric CO2 concentration (pCOz) variation in the Yumen, Gansu Province during the middle Cretaceous has been reconstructed using the newly established plant photosynthetic gas exchange mechanistic model, and the results show that the pCO2 values are in the range of about 550 -808 ppmv. The present pCO2 values are higher than the pCO2 results (531-641 ppmv) of the previous study according to the Recent standardization of the stomatal ratio method, and much lower than the pCO2 results (882-1060 ppmv) according to the Carboniferous standardization of the stomatal ratio method. The present pCOz variation is not only within the error range of GEOCARB II and GEOCARB Ill but also is similar to the reconstructed results based on the biochemistry and carbon isotope models. Besides, the present Brachyphyllum specimens were collected from four consecutive horizons of the upper Zhonggou Formation of the Hanxia Section, and the reconstructed pCO2 exhibits the reconstructed pCO2 exhibits a decline trend during the late Aptian to early Albian. This decline variation is probably associated with the Oceanic Anoxic Events (OAElb) and the Cold snap event. With the combination of pCO2 during the Albian to Cenomanian recovered by the plant photosynthetic gas exchange mechanistic model, the pCO2 showed a prominent increase during the late Aptian to early Cenominian, which indicates a response to the greenhouse warming during the middle Cretaceous. Therefore, the mechanical model of the plant photosynthetic gas exchange shows a relatively strong accuracy in the reconstruction of thepCO2 and can reflect a strong relation between the atmospheric CO2 concentrations and climatic events.展开更多
基金supported by Chinese Ministry of Education (No.213022A)the National Natural Science Foundation of China (No.51574112)+4 种基金Henan Key Laboratory of Biogenic Traces and Sedimentary Minerals (No.OTMP1410)the Key Research Project of Higher Education Institution of Henan Province in 2015 (No.15A440001)the Doctor Funds of Henan Polytechnic University (No.B2015-05)the Basic and Advanced Technology Research Projects of Henan Province (No.162300410031)the Science and Technology Innovation Funds for Distinguished Young Scholar in Henan Province (No.164100510013)
文摘A gas migration controlling equation was formulated based on the characteristics of the dual pore–fracture media of coal mass and in consideration of the matrix exchange between pores and fractures.A model of permeability dynamic evolution was established by analyzing the variation in effective stress during gas drainage and the action mechanism of the effect of coal matrix desorption on porosity and fracture in the coal body.A coupling model can then be obtained to characterize gas compressibility and coal deformability under the gas–solid coupling of loading coal.In addition,a 3D model of boreholes was established and solved for gas drainage based on the relevant physical parameters of real mines.The comparison and analysis results for the law of gas migration and the evolution of coal body permeability around the boreholes before and after gas extraction between the dual media and the single-seepage field models can provide a theoretical basis for further research on the action mechanism of gas drainage.
基金the National Natural Science Foundation of China(No.41402007,41602023,40972025)the State Key Laboratory of Palaeobiology and Stratigraphy,Nanjing Institute of Geology and Palaeontology,CAS(No.153102)
文摘The palaeo-atmospheric CO2 concentration (pCOz) variation in the Yumen, Gansu Province during the middle Cretaceous has been reconstructed using the newly established plant photosynthetic gas exchange mechanistic model, and the results show that the pCO2 values are in the range of about 550 -808 ppmv. The present pCO2 values are higher than the pCO2 results (531-641 ppmv) of the previous study according to the Recent standardization of the stomatal ratio method, and much lower than the pCO2 results (882-1060 ppmv) according to the Carboniferous standardization of the stomatal ratio method. The present pCOz variation is not only within the error range of GEOCARB II and GEOCARB Ill but also is similar to the reconstructed results based on the biochemistry and carbon isotope models. Besides, the present Brachyphyllum specimens were collected from four consecutive horizons of the upper Zhonggou Formation of the Hanxia Section, and the reconstructed pCO2 exhibits the reconstructed pCO2 exhibits a decline trend during the late Aptian to early Albian. This decline variation is probably associated with the Oceanic Anoxic Events (OAElb) and the Cold snap event. With the combination of pCO2 during the Albian to Cenomanian recovered by the plant photosynthetic gas exchange mechanistic model, the pCO2 showed a prominent increase during the late Aptian to early Cenominian, which indicates a response to the greenhouse warming during the middle Cretaceous. Therefore, the mechanical model of the plant photosynthetic gas exchange shows a relatively strong accuracy in the reconstruction of thepCO2 and can reflect a strong relation between the atmospheric CO2 concentrations and climatic events.