期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Oxide film on bubble surface of aluminum foams produced by gas injection foaming process 被引量:3
1
作者 周宇通 李言祥 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2429-2437,共9页
Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical ... Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical microscopy,scanning electron microscopy(SEM) and Auger electron spectroscopy(AES) were used to analyze the influence of oxygen content on cell structure,relative density,macro and micro morphology of cell walls,coverage area fraction of oxide film,thickness of oxide film and other aspects.Results indicate that the coverage area fraction of oxide film on bubble surface increases with the increase of oxygen content when the oxygen volume is less than 1.2%.While when the oxygen volume fraction is larger than 1.6%,an oxide film covers the entire bubble surface and aluminum foams with good cell structure can be produced.The thicknesses of oxide films of aluminum foams produced by gas mixtures containing 1.6%-21%oxygen are almost the same.The reasons why the thickness of oxide film nearly does not change with the variation of oxygen content and the amount of oxygen needed to achieve 100%coverage of oxide film are both discussed.In addition,the role of oxide film on bubble surface in foam stability is also analyzed. 展开更多
关键词 aluminum foam gas injection foaming process oxide film foam stability mechanism
下载PDF
Oxidation kinetics of oxide film on bubble surface of aluminum foams produced by gas injection foaming process 被引量:1
2
作者 周宇通 李言祥 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2781-2788,共8页
In the range of 620?710 °C, air was blown into A356 aluminum alloy melt to produce aluminum foams. In order to study the influence of temperature on the thickness of oxide film on bubble surface, Auger electron ... In the range of 620?710 °C, air was blown into A356 aluminum alloy melt to produce aluminum foams. In order to study the influence of temperature on the thickness of oxide film on bubble surface, Auger electron spectroscopy (AES) was used. Based on the knowledge of corrosion science and hydrodynamics, two oxidation kinetics models of oxide film on bubble surface were established. The thicknesses of oxide films produced at different temperatures were predicted through those two models. Furthermore, the theoretical values were compared with the experimental values. The results indicate that in the range of 620?710 °C, the theoretical values of the thickness of oxide film predicted by the model including the rising process are higher than the experimental values. While, the theoretical values predicted by the model without the rising process are in good agreement with the experimental values, which shows this model objectively describes the oxidation process of oxide film on bubble surface. This work suggests that the oxidation kinetics of oxide film on bubble surface of aluminum foams produced by gas injection foaming process follows the Arrhenius equation. 展开更多
关键词 aluminum foam gas injection foaming process oxide film oxidation kinetics
下载PDF
Hollow micro- and nano-particles by gas foaming 被引量:1
3
作者 Silvia Orsi Ernesto Di Maio +1 位作者 Salvatore lannace Paolo A. Netti 《Nano Research》 SCIE EI CAS CSCD 2014年第7期1018-1026,共9页
This paper presents the results of a first successful attempt to produce hollow micro- and nano-particles of a large variety of materials, dimensions, shapes and hollow attributes by using an environmentally friendly ... This paper presents the results of a first successful attempt to produce hollow micro- and nano-particles of a large variety of materials, dimensions, shapes and hollow attributes by using an environmentally friendly and cheap technology, common in polymer processing and known as gas foaming. The central role played by ad hoc polymeric hollow micro- and nano-particles in a variety of emerging applications such as drug delivery, medical imaging, advanced materials, as well as in fundamental studies in nanotechnology highlights the wide relevance of the proposed method. Our key contribution to overcome the physical lower bound in the micro- and nano-scale gas foaming was to embed, prior to foaming, bulk micro- and nano-particles in a removable and deformable barrier film, whose role is to prevent the loss of the blowing agent, which is otherwise too fast to allow bubble formation. Furthermore, the barrier film allows for non-isotropic deformation of the particle and/or of the hollow, affording non-spherical hollow particles. In comparison with available methods to produce hollow micro- and nano-particles, our method is versatile since it offers independent control over the dimensions, material and shape of the particles, and the number, shape and open/closed features of the hollows. We have gas- foamed polystyrene and poly-(lactic-co-glycolic) acid particles 200 ~m to 200 nm in size, spherical, ellipsoidal and discoidal in shape, obtaining open or closed, single or multiple, variable in size hollows. 展开更多
关键词 HOLLOW NANOPARTICLES MICROPARTICLES gas foaming
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部