期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
Numerical Simulation of Asphaltene Precipitation and Deposition during Natural Gas and CO_(2) Injection
1
作者 Shasha Feng Yi Liao +3 位作者 Weixin Liu Jianwen Dai Mingying Xie Li Li 《Fluid Dynamics & Materials Processing》 EI 2024年第2期275-292,共18页
Asphaltene deposition is a significant problem during gas injection processes,as it can block the porous medium,the wellbore,and the involved facilities,significantly impacting reservoir productivity and ultimate oil re... Asphaltene deposition is a significant problem during gas injection processes,as it can block the porous medium,the wellbore,and the involved facilities,significantly impacting reservoir productivity and ultimate oil recovery.Only a few studies have investigated the numerical modeling of this potential effect in porous media.This study focuses on asphaltene deposition due to natural gas and CO_(2) injection.Predictions of the effect of gas injection on asphaltene deposition behavior have been made using a 3D numerical simulation model.The results indicate that the injection of natural gas exacerbates asphaltene deposition,leading to a significant reduction in permeability near the injection well and throughout the reservoir.This reduction in permeability strongly affects the ability of gas toflow through the reservoir,resulting in an improvement of the displacement front.The displacement effi-ciency of the injection gas process increases by up to 1.40%when gas is injected at 5500 psi,compared to the scenario where the asphaltene model is not considered.CO_(2) injection leads to a miscible process with crude oil,extracting light and intermediate components,which intensifies asphaltene precipitation and increases the viscosity of the remaining crude oil,ultimately reducing the recovery rate. 展开更多
关键词 Reservoir simulation asphaltenes deposition natural gas injection CO_(2)injection
下载PDF
Comparison of different noble gas injections by massive gas injection on plasma disruption mitigation on Experimental Advanced Superconducting Tokamak
2
作者 赵胜波 庄会东 +8 位作者 元京升 张德皓 黎立 曾龙 陈大龙 毛松涛 黄明 左桂忠 胡建生 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期42-48,共7页
Massive gas injection(MGI)is a traditional plasma disruption mitigation method.This method directly injected massive gas into the pre-disruption plasma and had been developed on the Experimental Advanced Superconducti... Massive gas injection(MGI)is a traditional plasma disruption mitigation method.This method directly injected massive gas into the pre-disruption plasma and had been developed on the Experimental Advanced Superconducting Tokamak(EAST).Different noble gas injection experiments,including He,Ne,and Ar,were performed to compare the mitigation effect of plasma disruption by evaluating the key parameters such as flight time,pre-thermal quench(pre-TQ),and current quench(CQ).The flight time was shorter for low atomic number(Z)gas,and the decrease in flight time by increasing the amount of gas was insignificant.However,both pre-TQ and CQ durations decreased considerably with the increase in gas injection amount.The effect of atomic mass on pre-TQ and CQ durations showed the opposite trend.The observed trend could help in controlling CQ duration in a reasonable area.Moreover,the analysis of radiation distribution with different impurity injections indicated that low Z impurity could reduce the asymmetry of radiation,which is valuable in mitigating plasma disruption.These results provided essential data support for plasma disruption mitigation on EAST and future fusion devices. 展开更多
关键词 disruption mitigation massive gas injection(MGI) Experimental Advanced Superconducting Tokamak(EAST)
下载PDF
Optimization of Gas-Flooding Fracturing Development in Ultra-Low Permeability Reservoirs
3
作者 Lifeng Liu Menghe Shi +3 位作者 Jianhui Wang Wendong Wang Yuliang Su Xinyu Zhuang 《Fluid Dynamics & Materials Processing》 EI 2024年第3期595-607,共13页
Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection f... Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained. 展开更多
关键词 Ultra-low permeability reservoir gas injection flooding component simulation fracture parameters intelligent optimization differential evolution
下载PDF
Fabrication of AlN-TiC/Al composites by gas injection processing 被引量:3
4
作者 YU Huashun CHEN Hongmei MA Rendian MIN Guanghui 《Rare Metals》 SCIE EI CAS CSCD 2006年第6期659-664,共6页
The fabrication of AlN-TiC/Al composites by carbon- and nitrogen-containing gas injection into Al-Mg-Ti melts was studied. It was shown that AlN and TiC particles could be formed by the in situ reaction of mixture gas... The fabrication of AlN-TiC/Al composites by carbon- and nitrogen-containing gas injection into Al-Mg-Ti melts was studied. It was shown that AlN and TiC particles could be formed by the in situ reaction of mixture gas (N2 + C2H2 + NH3) with Al-Mg-Ti melts. The condition for the formation of AlN was that the treatment temperature must be higher than 1373 K, and the amounts of AlN and TiC increased with the increase of the treatment temperature and the gas injection time It was considered that AlN was formed by the direct reaction of Al with nitrogen-containing gas at the interface of the gas bubble and the melt. However, the mechanism of TiC formation is a combination mechanism of solution-precipitation and solid-liquid reaction. 展开更多
关键词 in situ composites gas injection aluminum nitride titanium carbide
下载PDF
Gas injection for enhanced oil recovery in two-dimensional geology-based physical model of Tahe fractured-vuggy carbonate reservoirs:karst fault system 被引量:1
5
作者 Zhao-Jie Song Meng Li +2 位作者 Chuang Zhao Yu-Long Yang Ji-Rui Hou 《Petroleum Science》 SCIE CAS CSCD 2020年第2期419-433,共15页
Gas injection serves as a main enhanced oil recovery(EOR)method in fractured-vuggy carbonate reservoir,but its effect differs among single wells and multi-well groups because of the diverse fractured-vuggy configurati... Gas injection serves as a main enhanced oil recovery(EOR)method in fractured-vuggy carbonate reservoir,but its effect differs among single wells and multi-well groups because of the diverse fractured-vuggy configuration.Many researchers conducted experiments for the observation of fluid flow and the evaluation of production performance,while most of their physical models were fabricated based on the probability distribution of fractures and caves in the reservoir.In this study,a two-dimensional physical model of the karst fault system was designed and fabricated based on the geological model of TK748 well group in the seventh block of the Tahe Oilfield.The fluid flow and production performance of primary gas flooding were discussed.Gas-assisted gravity flooding was firstly introduced to take full use of gas-oil gravity difference,and its feasibility in the karst fault system was examined.Experimental results showed that primary gas flooding created more flow paths and achieved a remarkable increment of oil recovery compared to water flooding.Gas injection at a lower location was recommended to delay gas breakthrough.Gas-assisted gravity flooding achieved more stable gas-displacing-oil because oil production was at a lower location,and thus,the oil recovery was further enhanced. 展开更多
关键词 gas injection Remaining oil Enhanced oil recovery Geology-based physical model Karst fault system
下载PDF
Conceptual Design of the ITER Gas Injection System
6
作者 杨愚 S.MARUYAMA +3 位作者 G.KISS 李伟 江涛 李波 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第3期287-290,共4页
A conceptual design review of the ITER gas injection system (GIS) function, safety, operation, and maintenance has recently been successfully completed. The GIS design can now continue to the preliminary design stag... A conceptual design review of the ITER gas injection system (GIS) function, safety, operation, and maintenance has recently been successfully completed. The GIS design can now continue to the preliminary design stage. This paper gives an overall description of the requirements and implementation at the concept design level. The designs of the sub-systems according to its breakdown structure are discussed against the corresponding requirements. 展开更多
关键词 ITER gas injection system system requirements concept design
下载PDF
Research on High Pressure Gas Injection As a Method of Fueling, Disruption Mitigation and Plasma Termination for Future Tokamak Reactors
7
作者 宋云涛 S.Nishio 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第5期3057-3061,共5页
High-pressure gas injection has proved to be an effective disruption mitigation tech- nique in DIII-D tokamak experiments. If the method can be applied in future tokamak reactors not only for disruption mitigation but... High-pressure gas injection has proved to be an effective disruption mitigation tech- nique in DIII-D tokamak experiments. If the method can be applied in future tokamak reactors not only for disruption mitigation but also for plasma termination and fueling, it will have an attractive advantage over the pellet and liquid injection from the viewpoint of economy and engineering design. In order to investigate the feasibility of this option, a study has been carried out with relevant parameters for conveying tubes of different geometrical sizes and for different gases. These parameters include pressure drop, lagger time after the valve's opening, gas diffusion in an ultra-high vacuum condition, and particle number contour. 展开更多
关键词 tokamak reactor disruption mitigation FUELING gas injection
下载PDF
Effects of helium massive gas injection level on disruption mitigation on EAST
8
作者 Abdullah ZAFAR 朱平 +2 位作者 Ahmad ALI 曾市勇 李浩龙 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第7期31-38,共8页
In this study,NIMROD simulations are performed to investigate the effects of massive helium gas injection level on the induced disruption on EAST tokamak.It is demonstrated in simulations that two different scenarios ... In this study,NIMROD simulations are performed to investigate the effects of massive helium gas injection level on the induced disruption on EAST tokamak.It is demonstrated in simulations that two different scenarios of plasma cooling(complete cooling and partial cooling)take place for different amounts of injected impurities.For the impurity injection above a critical level,a single MHD activity is able to induce a complete core temperature collapse.For impurity injection below the critical level,a series of multiple minor disruptions occur before the complete thermal quench. 展开更多
关键词 massive gas injection MHD instabilities major disruption minor disruption
下载PDF
Calculation of the Gas Injection Rate and Pipe String Erosion in Nitrogen Drilling Systems
9
作者 Mingren Shao Chunpeng Wang +3 位作者 Degui Wang Wenbo Mei Mingjie Li Hao Yang 《Fluid Dynamics & Materials Processing》 EI 2022年第2期417-430,共14页
Detailed information is provided for the design and construction of nitrogen drilling in a coal seam.Two prototype wells are considered.The Guo model is used to calculate the required minimum gas injection rate,while ... Detailed information is provided for the design and construction of nitrogen drilling in a coal seam.Two prototype wells are considered.The Guo model is used to calculate the required minimum gas injection rate,while the Finnie,Sommerfeld,and Tulsa models are exploited to estimate the ensuing erosion occurring in pipe strings.The calculated minimum gas injection rates are 67.4 m^(3)/min(with water)and 49.4 m^(3)/min(without water),and the actual field of use is 90–120 m^(3)/min.The difference between the calculated injection pressure and the field value is 6.5%–15.2%(formation with water)and 0.65%–7.32%(formation without water).The results show that the Guo model can more precisely represent the situation of the no water formation in the nitrogen drilling of a coal seam.The Finnie,Sommerfeld,and Tulsa models have different sensitivities to cutting densities,particle size,impact velocity and angle,and pipe string hardness. 展开更多
关键词 Coalbed methane nitrogen drilling minimum gas injection rate erosion of pipe string analysis on the scene
下载PDF
SELECTIVE SULFUR DIOXIDE DETERMINATION BY GAS DIFFUSION FLOW INJECTION ANALYSIS WITH CHEMILUMINESCENT DETECTION
10
作者 Yong He BAO Qi Jun SONG Department of Chemistry,XingJiang University,Urumchi,830046 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第4期313-314,共2页
Sulfur dioxide has been found to decrease the chemiluminescence of luminol-iodine system.A new determination method for sulfur dioxide in atmosphere is developed by applying this reaction to a flow injection gas diffu... Sulfur dioxide has been found to decrease the chemiluminescence of luminol-iodine system.A new determination method for sulfur dioxide in atmosphere is developed by applying this reaction to a flow injection gas diffusion separation system.This permits the determination of sulfur dioxide selectively and rapidly. 展开更多
关键词 FLOW SELECTIVE SULFUR DIOXIDE DETERMINATION BY gas DIFFUSION FLOW injection ANALYSIS WITH CHEMILUMINESCENT DETECTION gas
下载PDF
Wear resistance of surface metal matrix composite produced by gas tungsten arc melt injection of Cr3C2 -NiCr particles into low carbon steel
11
作者 刘爱国 武小娟 +1 位作者 孟凡玲 孙焕焕 《China Welding》 EI CAS 2012年第3期12-16,共5页
Cr3 C2-NiCr particles were injected into the melted surface of Q235 low carbon steel to make a surface metal matrix composite (MMC) layer by gas tungsten are melt injection (GTAMI) process. Hardness of the surface... Cr3 C2-NiCr particles were injected into the melted surface of Q235 low carbon steel to make a surface metal matrix composite (MMC) layer by gas tungsten are melt injection (GTAMI) process. Hardness of the surface MMC layer was tested. Wear resistance of the surface MMC was investigated with a ball-on-disk dry sliding setup. Microstrnetures of the surface MMC layer and morphology of the worn surfaces were investigated with scanning electron microscopy (SEM). The results showed that the hardness of the MMC was as high as 1 960. 7 HV. Wear loss of the upper part of the MMC layer is onlyO. 8% of that of the substrate under the dry sliding condition given. Wear loss of the bottom part is 2. 5 % of that of the substrate. 展开更多
关键词 surface metal matrix composite Cr3 C2-NiCr gas tungsten arc melt injection wear resistance
下载PDF
Optimization of operational strategies for rich gas enhanced oil recovery based on a pilot test in the Bakken tight oil reservoir
12
作者 Xincheng Wan Lu Jin +4 位作者 Nicholas A.Azzolina Jin Zhao Xue Yu Steven A.Smith James A.Sorensen 《Petroleum Science》 SCIE EI CSCD 2023年第5期2921-2938,共18页
Horizontal well drilling and multistage hydraulic fracturing have been demonstrated as effective approaches for stimulating oil production in the Bakken tight oil reservoir.However,after multiple years of production,p... Horizontal well drilling and multistage hydraulic fracturing have been demonstrated as effective approaches for stimulating oil production in the Bakken tight oil reservoir.However,after multiple years of production,primary oil recovery in the Bakken is generally less than 10%of the estimated original oil in place.Gas huff‘n’puff(HnP)has been tested in the Bakken Formation as an enhanced oil recovery(EOR)method;however,most field pilot test results showed no significant incremental oil production.One of the factors affecting HnP EOR performance is premature gas breakthrough,which is one of the most critical issues observed in the field because of the presence of interwell fractures.Consequently,injected gas rapidly reaches adjacent production wells without contacting reservoir rock and increasing oil recovery.Proper conformance control is therefore needed to avoid early gas breakthrough and improve EOR performance.In this study,a rich gas EOR pilot in the Bakken was carefully analyzed to collect the essential reservoir and operational data.A simulation model with 16 wells was then developed to reproduce the production history and predict the EOR performance with and without conformance control.EOR operational strategies,including single-and multiple-well HnP,with different gas injection constraints were investigated.The simulation results of single-well HnP without conformance control showed that a rich gas injection rate of at least 10 MMscfd was needed to yield meaningful incremental oil production.The strategy of conformance control via water injection could significantly improve oil production in the HnP well,but injecting an excessive amount of water also leads to water breakthrough and loss of oil production in the offset wells.By analyzing the production performance of the wells individually,the arrangement of wells was optimized for multiple-well HnP EOR.The multiwell results showed that rich gas EOR could improve oil production up to 7.4%by employing conformance control strategies.Furthermore,replacing rich gas with propane as the injection gas could result in 14%of incremental oil production. 展开更多
关键词 Rich gas injection Bakken tight oil reservoir EOR strategies Conformance control Embedded discrete fracture model
下载PDF
Simulation Studies on Comparative Evaluation of Waterflooding and Gas Injection in Niger Delta Thin-Bed Reservoir
13
作者 Ubanozie Julian Obibuike Anthony Kerunwa +1 位作者 Mathew Chidube Udechukwu Stanley Toochukwu Ekwueme 《Open Journal of Yangtze Oil and Gas》 2022年第1期65-83,共19页
There is a need to increase ultimate recovery from petroleum reservoirs. In order to guarantee efficient resource extraction from reservoirs, primary recovery methods cannot be relied on throughout the life of a well.... There is a need to increase ultimate recovery from petroleum reservoirs. In order to guarantee efficient resource extraction from reservoirs, primary recovery methods cannot be relied on throughout the life of a well. There is a time in the life of a reservoir when the primary energy will not be sufficient to ensure economic recovery. Complete abandonment of the reservoir at this point may not be a sound engineering decision given the huge investments in developing the asset. Secondary recovery methods present potentials for the recovery of the other trapped resources. The choice of the secondary recovery means depends on the reservoir and geologic conditions and should be determined by modeling and simulation. In this work, a simulation study is conducted for Niger Delta Field ABX2 to determine the performance of water-flooding and gas injection in the recovery of the asset after the primary recovery stage. ECLIPSE Blackoil simulator was used for the modeling and simulation. An equal reservoir rectangular grid block was designed for both the waterflooding and water injection comprising a total of 750 grid cells. Water and gas were injected in both cases at an injection rate of 11,000 stb/d and 300,000 scf/d for waterflooding and gas injection respectively. From the results of the simulation, it was realized that waterflooding gave a higher total oil recovery than gas injection. The difference in oil recovery from water-flooding and gas injection amounted to 0.08 MMstb/d. The Field Oil Recovery Efficiency (FOE) for waterflooding and gas injection was 38% and 16% respectively giving a difference of 22%. The waterflooding method was troubled with excessive water cuts due to water breakthroughs. Waterflooding was chosen against gas injection to be applied to Field ABX2 to improve recovery after primary production ceased. 展开更多
关键词 WATERFLOODING gas injection SIMULATION Recovery Efficiency Ultimate Recovery
下载PDF
Estimation of Minimum Miscibility Pressure for Flue Gas Injection Using Soft Experimentations
14
作者 Oluwaseun Oyinloye Naeema Al Darmaki +2 位作者 Mohamed Al Zarooni Fathi Boukadi Hildah Nantongo 《Natural Resources》 2021年第11期363-381,共19页
A new approach is demonstrated in which soft experimentation can be performed for MMP measurements, thus replacing the common practice of slim tube displacement laboratory experiments. Recovery potential from oil rese... A new approach is demonstrated in which soft experimentation can be performed for MMP measurements, thus replacing the common practice of slim tube displacement laboratory experiments. Recovery potential from oil reservoirs by miscible flue gas injection was studied by slim tube and field-scale numerical simulation using two flue gases and seven crude oils sampled at different depths in three candidate reservoirs. The soft experimentations were conducted using Eclipse300<sup>TM</sup>, a three-phase compositional simulator. This study investigates minimum miscibility pressure (MMP), a significant miscible gas injection project screening tool. Successful design of the project is contingent to the accurate determination of the MMP. This study evaluates effects of important factors such as injection pressure, oil component composition, and injection gas composition on the MMP and recovery efficiency for slim tube and field-scale displacements. Two applicable MMP correlations were used for comparison and validation purposes. 展开更多
关键词 Empirical Correlation Minimum Miscibility Pressure Slim-Tube Soft Experimentation Field-Scale Numerical Simulation Flue gas injection
下载PDF
Experimental Study on Phase Characteristics of CO2 Injection in BZ13-2 Strong Volatile Oil Reservoir in Bohai Sea Buried Hills
15
作者 Zhennan Gao Lei Zhang +2 位作者 Yong Jiang Jingtao Wu Chenxu Yang 《Open Journal of Geology》 2023年第7期763-772,共10页
BZ13-2 oil field is a deep submerged strongly volatile reservoir in Bohai Sea. This oil reservoir has the characteristics of high gas oil ratio and small difference in formation pressure and saturation point pressure.... BZ13-2 oil field is a deep submerged strongly volatile reservoir in Bohai Sea. This oil reservoir has the characteristics of high gas oil ratio and small difference in formation pressure and saturation point pressure. It usually adopts gas injection development to avoid crude oil degassing and fast decreasing production capacity. However, the phase characteristics and miscibility mechanism of this high-temperature and high-pressure fluid after gas injection are not clear. Therefore, it is necessary to study the feasibility of CO<sub>2</sub> injection to improve oil recovery in near critical volatile oil reservoirs through CO<sub>2</sub> injection experiments. In the early stage of the depletion experiment, the content of heavy components in the remaining oil increased significantly, so the depletion method is not conducive to the development of such reservoirs. With the increase of CO<sub>2</sub> injection, the volumetric expansion coefficient of formation crude oil increases significantly, while the saturation pressure and formation crude oil viscosity remain basically unchanged. The minimum miscible pressure experiment shows that CO<sub>2</sub> injection under formation pressure conditions can achieve multiphase miscibility. Based on experimental research results, the BZ13-2 oilfield is suitable for early gas injection development and can significantly improve recovery. 展开更多
关键词 Bohai Buried Hills Strongly Volatile Reservoir gas injection and Development Phase Characteristics Fine Tube Experiment
下载PDF
Enhancing recovery and sensitivity studies in an unconventional tight gas condensate reservoir 被引量:3
16
作者 Min Wang Shengnan Chen Menglu Lin 《Petroleum Science》 SCIE CAS CSCD 2018年第2期305-318,共14页
The recovery factor from tight gas reservoirs is typically less than 15%, even with multistage hydrauhc tractunng stimulation. Such low recovery is exacerbated in tight gas condensate reservoirs, where the depletion o... The recovery factor from tight gas reservoirs is typically less than 15%, even with multistage hydrauhc tractunng stimulation. Such low recovery is exacerbated in tight gas condensate reservoirs, where the depletion of gas leaves the valuable condensate behind. In this paper, three enhanced gas recovery (EGR) methods including produced gas injection, CO2 injection and water injection are investigated to increase the well productivity for a tight gas condensate reservoir in the Montney Formation, Canada. The production performance of the three EGR methods is compared and their economic feasibility is evaluated. Sensitivity analysis of the key factors such as primary production duration, bottom-hole pressures, and fracture conductivity is conducted and their effects on the well production performance are analyzed. Results show that, compared with the simple depletion method, both the cumulative gas and condensate production increase with fluids injected. Produced gas injection leads to both a higher gas and condensate production compared with those of the CO2 injection, while waterflooding suffers from injection difficulty and the corresponding low sweep efficiency. Meanwhile, the injection cost is lower for the produced gas injection due to the on-site available gas source and minimal transport costs, gaining more economic benefits than the other EGR methods. 展开更多
关键词 Tight gas condensate reservoirs Enhanced/improved gas recovery Produced gas injection Sensitivity study Economic benefit
下载PDF
Deployment and Exploration of a Gas Storage Well Pattern Based on the Threshold Radius 被引量:1
17
作者 TANG Ligen ZHU Weiyao +11 位作者 ZHU Huayin SUN Chunhui YANG Fenglai WANG Yan Li Xiaorui Li Haiming CHU Guangzhen WANG Jieming KONG Debin YUE Ming LIU Yuwei HUANG Kun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第2期630-637,共8页
To tackle the problem that wells that are deployed in a specific pattern based on the requirements of gas reservoir development are not suitable for gas storage,we have conducted concentrically circular injection and ... To tackle the problem that wells that are deployed in a specific pattern based on the requirements of gas reservoir development are not suitable for gas storage,we have conducted concentrically circular injection and production simulation experiments for gas storage,discovered the existence of a threshold radius,denoted by Rt,and derived the expression for Rt.Based on the analysis and discussion results,we propose a strategy for deploying gas storage wells in specific patterns.The expression for Rt shows that it is affected by factors such as the gas storage gas production/injection time,the upper pressure limit,the lower pressure limit,the bottomhole flow pressure at the ends of injection and production,the and permeability.The analysis and discussion results show that the Rt of a gas storage facility is much smaller than the Rt for gas reservoir development.In the gas storage facilities in China,the Rt for gas production is less than the Rt for the gas injection,and Rt increases with the difference in the operating pressure and with permeability K.Based on the characteristics of Rt,we propose three suggestions for gas storage well pattern deployment:(1)calculate Rt according to the designed functions of the gas storage facility and deploy the well pattern according to Rt;(2)deploy sparser,large-wellbore patterns in high-permeability areas and denser,small-wellbore patterns in high-permeability areas;and(3)achieve the gas injection well pattern by new drilling,and the gas production well pattern through a combination of the gas injection well pattern and old wells.By assessing a gas storage facility with a perfect well pattern after a number of adjustments,we found that the Rt of the 12 wells calculated in this paper is basically close to the corresponding actual radius,which validates our method.The results of this study provide a methodological basis for well pattern deployment in new gas storage construction. 展开更多
关键词 gas storage well deployment strategy gas injection well pattern gas production well pattern threshold radius
下载PDF
Diffusion coefficients of natural gas in foamy oil systems under high pressures 被引量:1
18
作者 Yan-Yu Zhang Xiao-Fei Sun +1 位作者 Xue-Wei Duan Xing-Min Li 《Petroleum Science》 SCIE CAS CSCD 2015年第2期293-303,共11页
The diffusion coefficient of natural gas in foamy oil is one of the key parameters to evaluate the feasibility of gas injection for enhanced oil recovery in foamy oil reservoirs. In this paper, a PVT cell was used to ... The diffusion coefficient of natural gas in foamy oil is one of the key parameters to evaluate the feasibility of gas injection for enhanced oil recovery in foamy oil reservoirs. In this paper, a PVT cell was used to measure diffusion coefficients of natural gas in Venezuela foamy oil at high pressures, and a new method for deter- mining the diffusion coefficient in the foamy oil was de- veloped on the basis of experimental data. The effects of pressure and the types of the liquid phase on the diffusion coefficient of the natural gas were discussed. The results indicate that the diffusion coefficients of natural gas in foamy oil, saturated oil, and dead oil increase linearly with increasing pressure. The diffusion coefficient of natural gas in the foamy oil at 20 MPa was 2.93 times larger than that at 8.65 MPa. The diffusion coefficient of the natural gas in dead oil was 3.02 and 4.02 times than that of the natural gas in saturated oil and foamy oil when the pressure was 20 MPa. However, the gas content of foamy oil was 16.9 times higher than that of dead oil when the dissolution time and pressure were 20 MPa and 35.22 h, respectively. 展开更多
关键词 Foamy oil Diffusion coefficient - Heavy oil gas injection High pressure
下载PDF
Experiments on Gas Jet in the Wendelstein 7-AS Stellarator 被引量:2
19
作者 姚良骅 J.Baldzuhn 《Plasma Science and Technology》 SCIE EI CAS CSCD 2003年第5期1933-1938,共6页
Wendelstein 7-AS (W7-AS) pertains to an advanced helical stellarator. A new fuelling method, the supersonic molecular beam injection (SMBI, named Gas Jet in Germany) system was installed in W7-AS in May 2001 as a coop... Wendelstein 7-AS (W7-AS) pertains to an advanced helical stellarator. A new fuelling method, the supersonic molecular beam injection (SMBI, named Gas Jet in Germany) system was installed in W7-AS in May 2001 as a cooperation research item co-supported by the National Nature Science Foundation of China and the Max-Planck Institute of Plasma Physics, Garching, Germany. The experiments of the gas jet with hydrogen or deuterium on W7-AS were implemented. The experimental results exhibit the following features such as high fuelling efficiency, stable high-density plasmas and reduction of the recycling fluxes from the vessel wall during injection. These crucial points show that the new fuelling method can be applied to long and stable discharges. 展开更多
关键词 gas jet (Supersonic Molecular Beam) injection wendelstein 7-AS stellarator fuelling
下载PDF
A laboratory study of hot WAG injection into fractured and conventional sand packs
20
作者 M J Dorostkar A Mohebbi +1 位作者 A Sarrafi A Soltani 《Petroleum Science》 SCIE CAS CSCD 2009年第4期400-404,共5页
Gas injection is the second largest enhanced oil recovery process, next only to the thermal method used in heavy oil fields. To increase the extent of the reservoir contacted by the injected gas, the gas is generally ... Gas injection is the second largest enhanced oil recovery process, next only to the thermal method used in heavy oil fields. To increase the extent of the reservoir contacted by the injected gas, the gas is generally injected intermittently with water. This mode of injection is called water-alternating-gas (WAG). This study deals with a new immiscible water alternating gas (IWAG) EOR technique, “hot IWAG” which includes combination of thermal, solvent and sweep techniques. In the proposed method CO2 will be superheated above the reservoir temperature and instead of normal temperature water, hot water will be used. Hot CO2 and hot water will be alternatively injected into the sand packs. A laboratory test was conducted on the fractured and conventional sand packs. Slugs of water and CO2 with a low and constant rate were injected into the sand packs alternatively; slug size was 0.05 PV. Recovery from each sand pack was monitored and after that hot water and hot CO2 were injected alternatively under the same conditions and increased oil recovery from each sand pack and breakthrough were measured. Experimental results showed that the injection of hot WAG could significantly recover residual oil after WAG injection in conventional and fractured sand packs. 展开更多
关键词 Hot water-alternating-gas (WAG) enhanced oil recovery (EOR) fractured sand pack conventional sand pack gas injection
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部