期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
Analysis of the Molecules Structure and Vertical Electron Affinity of Organic Gas Impact on Electric Strength 被引量:13
1
作者 焦俊韬 肖登明 +1 位作者 赵小令 邓云坤 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第5期554-559,共6页
It is necessary to find an efficient selection method to pre-analyze the gas electric strength from the perspective of molecule structure and the properties for finding the alternative gases to sulphur hexafluoride (... It is necessary to find an efficient selection method to pre-analyze the gas electric strength from the perspective of molecule structure and the properties for finding the alternative gases to sulphur hexafluoride (SF6). As the properties of gas are determined by the gas molecule structure, the research on the relationship between the gas molecule structure and the electric strength can contribute to the gas pre-screening and new gas development. In this paper, we calculated the vertical electron affinity, molecule orbits distribution and orbits energy of gas molecules by the means of density functional theory (DFT) for the typical structures of organic gases and compared their electric strengths. By this method, we find part of the key properties of the molecule which are related to the electric strength, including the vertical electron affinity, the lowest unoccupied molecule orbit (LUMO) energy, molecule orbits distribution and negativeion system energy. We also listed some molecule groups such as unsaturated carbons double bonds (C=C) and carbonitrile bonds (C=N) which have high electric strength theoretically by this method. 展开更多
关键词 gas insulation electric strength SF6 substitutes molecule structure
下载PDF
Multistring analysis of wellhead movement and uncemented casing strength in offshore oil and gas wells 被引量:7
2
作者 Liu Xiuquan Chen Guoming +3 位作者 Chang Yuanjiang Zhang Lei Zhang Weiguo Xie Hua 《Petroleum Science》 SCIE CAS CSCD 2014年第1期131-138,共8页
This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include o... This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include operating load during drilling and completion and the temperature field,pressure field and the end effect of pressure during gas production.The finite element method for multistring analysis is developed to simulate random contact between casings.The relevant finite element analysis scheme is also presented according to the actual procedures of drilling,completion and gas production.Finally,field cases are presented and analyzed using the proposed methods.These are four offshore wells in the South China Sea.The calculated wellhead growths during gas production are compared with measured values.The results show that the wellhead subsides during drilling and completion and grows up during gas production.The theoretical and finite element solutions for wellhead growth are in good agreement with measured values and the deviations of calculation are within 10%.The maximum von Mises stress on the uncemented intermediate casing occurs during the running of the oil tube.The maximum von Mises stress on the uncemented production casing,calculated with the theoretical method occurs at removing the blow-out-preventer (BOP) while that calculated with the finite element method occurs at gas production.Finite element solutions for von Mises stress are recommended and the uncemented casings of four wells satisfy strength requirements. 展开更多
关键词 Offshore oil and gas wells drilling and completion gas production wellhead movement uncemented casing strength gap element
下载PDF
Optimization of pulsed current gas tungsten arc welding process parameters to attain maximum tensile strength in AZ31B magnesium alloy 被引量:7
3
作者 G.PADMANABAN V.BALASUBRAMANIAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期467-476,共10页
An empirical relationship to predict tensile strength of pulsed current gas tungsten arc welded AZ31B magnesium alloy was developed. Incorporating process parameters such as peak current, base current, pulse frequency... An empirical relationship to predict tensile strength of pulsed current gas tungsten arc welded AZ31B magnesium alloy was developed. Incorporating process parameters such as peak current, base current, pulse frequency and pulse on time were studied. The experiments were conducted based on a four-factor, five-level, central composite design matrix. The developed empirical relationship can be effectively used to predict the tensile strength of pulsed current gas tungsten arc welded AZ31B magnesium alloy joints at 95% confidence level. The results indicate that pulse frequency has the greatest influence on tensile strength, followed by peak current, pulse on time and base current. 展开更多
关键词 AZ31B magnesium alloy pulsed current gas tungsten arc welding response surface methodology OPTIMIZATION tensile strength
下载PDF
Strength criterion effect of the translator and destabilization model of gas-bearing coal seam 被引量:2
4
作者 Gang Wang Rui Wang +2 位作者 Mengmeng Wu Cheng Fan Xiang Song 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第2期327-333,共7页
Coal seam destabilization inflicts damage to equipment, causes property loss and personnel casualties,and severely threatens mining safety and efficient production. To further understand this destabilization based on ... Coal seam destabilization inflicts damage to equipment, causes property loss and personnel casualties,and severely threatens mining safety and efficient production. To further understand this destabilization based on the basic theory of Lippmann seam destabilization, a mathematical model was introduced for gas pressure distribution by considering intermediate principal stress and support resistance.Subsequently, we established a translation model suitable for the entire roadway coal seam with rocky roof and floor by applying the unified form of yield criterion in the state of plane strain. We also obtained the analytic expressions of coal seam stress distribution on both sides of the roadway and the widths of plastic and disturbance zones. Afterward, we analyzed several typical cases with different material yield criteria, obtained the plastic zone widths of the coal seam under different gas pressures, and assessed the effects of support resistance, roadway size, and coal strength on coal seam destabilization. Results showed that: the results obtained on the basis of Wilson and Mohr–Coulomb criteria are considerably conservative, and the use of Druker–Prager criteria to evaluate the rockburst-induced coal seam destabilization is safer than the use of the two other criteria; coal seam stability is correlated with gas pressure;and high-pressure gas accelerates the coal seam destabilization. 展开更多
关键词 Coal SEAM DESTABILIZATION strength criterion EFFECT gas Stress distribution
下载PDF
Predicting the Dielectric Strength of c-C_4F_8 and SF_6 Gas Mixtures by Monte Carlo Method 被引量:3
5
作者 吴变桃 肖登明 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第1期121-124,共4页
An improved Monte Carlo method was used to simulate the motion of electrons in c-C4F8 and SF6 gas mixtures for pulsed townsend discharge. The electron swarm parameters such as effective ionization coefficient, -↑α a... An improved Monte Carlo method was used to simulate the motion of electrons in c-C4F8 and SF6 gas mixtures for pulsed townsend discharge. The electron swarm parameters such as effective ionization coefficient, -↑α and drift velocity over the E/N range from 280~700 Td(1Td=10^-21 V·m^2) were calculated by employing a set of cross sections available in literature. From the variation cure of -↑α with SF6 partial pressure p, the limiting field (E/N)lim of gas mixture at different gas content was determined. It is found that the limiting field of c-C4F8 and SF6 gas mixture is higher than that of pure SF6 at any SF6 mixture ratio. Simulation results show excellent agreement with experiment data available in previous literature. 展开更多
关键词 c-C4F8 and SF6 gas mixture Monte Carlo limiting field dielectric strength
下载PDF
METAL INERT GAS WELDING OF 2519-T87 HIGH STRENGTH ALUMINUM ALLOY 被引量:1
6
作者 XU Lianghong TIAN Zhiling +1 位作者 ZHANG Xiaomu PENG Yun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第4期32-35,共4页
20 mm thick plates of 2519-T87 high strength aluminum alloy have been welded.The effects of the compositions of filler wires,the heat input and the compositions of shielding gas on the mechanical properties and micros... 20 mm thick plates of 2519-T87 high strength aluminum alloy have been welded.The effects of the compositions of filler wires,the heat input and the compositions of shielding gas on the mechanical properties and microstructure of the welded joint have been investigated.The results indicate that finer microstructure,better mechanical properties and higher value of hardness of HAZ can be obtained by using lower heat input.The use of Ar/He mixed shielding gas has several advantages over pure Ar shielding gas.With the increase of the proportion of He in the mixed shielding gas, the grain size of the weld metal as well as porosity susceptibility decreases.When the volume ratio of He to Ar reaches 7:3,the porosity and the grain size of weld metal reach the minimum,and the porosity can be further reduced by filling some CO2. 展开更多
关键词 High strength aluminum alloy WIRE Heat input Shielding gas
下载PDF
Experimental Evaluation of Compressive Strength and Gas Permeability of Glass- Powder-Containing Mortar
7
作者 Yue Liang Wenxuan Dai Wei Chen 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2639-2659,共21页
Glass powder of various particle sizes(2,5,10 and 15μm)has been assessed as a possible cement substitute for mortars.Different replacement rates of cement(5%,10%,15%,and 20%)have been considered for all particle size... Glass powder of various particle sizes(2,5,10 and 15μm)has been assessed as a possible cement substitute for mortars.Different replacement rates of cement(5%,10%,15%,and 20%)have been considered for all particle sizes.The accessible porosity,compressive strength,gas permeability and microstructure have been investigated accordingly.The results have shown that adding glass powder up to 20%has a significantly negative effect on the porosity and compressive strength of mortar.The compressive strength initially rises with a 5%replacement and then decreases.Similarly,the gas permeability of the mortar displays a non-monotonic behavior;first,it decreases and then it grows with an increase in the glass powder content and particle size.The porosity and gas permeability attain a minimum for a 5%content and 10μm particle size.Application of a Nuclear magnetic resonance(NMR)technique has revealed that incorporating waste glass powder with a certainfineness can reduce the pore size and the number of pores of the mortar.Compared with the control mortar,the pore volume of the waste glass mortar with 5%and 10μm particle size is significantly reduced.When cement is partially replaced by glass powder with a particle size of 10μm and a 5%percentage,the penetration resistance and compressive strength of the mortar are significantly improved. 展开更多
关键词 Waste glass powder MORTAR POROSITY gas permeability compressive strength NMR
下载PDF
New insights into the deposition of natural gas hydrate on pipeline surfaces:A molecular dynamics simulation study
8
作者 Jun Zhang Hai-Qiang Fu +7 位作者 Mu-Zhi Guo Zhao Wang Li-Wen Li Qi Yin You-Guo Yan Wei Wei Wei-Feng Han Jie Zhong 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期694-704,共11页
Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent N... Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent NGH blockages.Previous studies suggested the water film can greatly increase hydrate adhesion in gas-dominant system.Herein,by performing the molecular dynamics simulations,we find in water-dominant system,the water film plays different roles in hydrate deposition on Fe and its corrosion surfaces.Specifically,due to the strong affinity of water on Fe surface,the deposited hydrate cannot convert the adsorbed water into hydrate,thus,a water film exists.As water affinities decrease(Fe>Fe_(2)O_(3)>FeO>Fe_(3)O_(4)),adsorbed water would convert to amorphous hydrate on Fe_(2)O_(3)and form the ordered hydrate on FeO and Fe_(3)O_(4)after hydrate deposition.While absorbed water film converts to amorphous or to hydrate,the adhesion strength of hydrate continuously increases(Fe<Fe_(2)O_(3)<FeO<Fe_(3)O_(4)).This is because the detachment of deposited hydrate prefers to occur at soft region of liquid layer,the process of which becomes harder as liquid layer vanishes.As a result,contrary to gas-dominant system,the water film plays the weakening roles on hydrate adhesion in water-dominant system.Overall,our results can help to better understand the hydrate deposition mechanisms on Fe and its corrosion surfaces and suggest hydrate deposition can be adjusted by changing water affinities on pipeline surfaces. 展开更多
关键词 DEPOSITION Natural gas hydrate Pipelines Water affinity Adhesion strength
下载PDF
An Investigation into the Compressive Strength,Permeability and Microstructure of Quartzite-Rock-Sand Mortar
9
作者 Wei Chen Wuwen Liu Yue Liang 《Fluid Dynamics & Materials Processing》 EI 2024年第4期859-872,共14页
River sand is an essential component used as a fine aggregate in mortar and concrete.Due to unrestrained exploitation,river sand resources are gradually being exhausted.This requires alternative solutions.This study d... River sand is an essential component used as a fine aggregate in mortar and concrete.Due to unrestrained exploitation,river sand resources are gradually being exhausted.This requires alternative solutions.This study deals with the properties of cement mortar containing different levels of manufactured sand(MS)based on quartzite,used to replace river sand.The river sand was replaced at 20%,40%,60%and 80%with MS(by weight or volume).The mechanical properties,transfer properties,and microstructure were examined and compared to a control group to study the impact of the replacement level.The results indicate that the compressive strength can be improved by increasing such a level.The strength was improved by 35.1%and 45.5%over that of the control mortar at replacement levels of 60%and 80%,respectively.Although there was a weak link between porosity and gas permeability in the mortars with manufactured sand,the gas permeability decreased with growing the replacement level.The microstructure of the MS mortar was denser,and the cement paste had fewer microcracks with increasing the replacement level. 展开更多
关键词 Manufactured sand QUARTZITE compressive strength gas permeability MICROSTRUCTURE
下载PDF
Mechanical properties of gas hydrate-bearing sediments during hydrate dissociation 被引量:10
10
作者 X.H.Zhang D.S.Luo +2 位作者 X.B.Lu L.L.Liu C.L.Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第2期266-274,共9页
The changes in the mechanical properties of gas hydrate-bearing sediments(GHBS) induced by gas hydrate(GH) dissociation are essential to the evaluation of GH exploration and stratum instabilities. Previous studies pre... The changes in the mechanical properties of gas hydrate-bearing sediments(GHBS) induced by gas hydrate(GH) dissociation are essential to the evaluation of GH exploration and stratum instabilities. Previous studies present substantial mechanical data and constitutive models for GHBS at a given GH saturation under the non-dissociated condition. In this paper, GHBS was formed by the gas saturated method, GH was dissociated by depressurization until the GH saturation reached different dissociation degrees. The stress–strain curves were measured using triaxial tests at a same pore gas pressure and different confining pressures. The results show that the shear strength decreases progressively by 30%–90% of the initial value with GH dissociation, and the modulus decreases by 50% –75%. Simplified relationships for the modulus, cohesion, and internal friction angle with GH dissociated saturation were presented. 展开更多
关键词 gas hydrate-bearing sediments DISSOCIATION Mechanical properties Shear strength Triaxial test
下载PDF
Study on Strength and Life of Anisotropic Single Crystal Blade - Part I: Crystallographic Constitutive Models and Applications 被引量:7
11
作者 尹泽勇 成晓鸣 +1 位作者 杨治国 岳珠峰 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2001年第1期18-23,共6页
The single crystal blade is one of the key technologies for improving the performance, durability and reliability of aero-engines and ground gas-turbine engines. However, the anisotropic mechanical properties of the s... The single crystal blade is one of the key technologies for improving the performance, durability and reliability of aero-engines and ground gas-turbine engines. However, the anisotropic mechanical properties of the single crystal material makes a great deal of difficulties on the development and the application of the single crystal blade, which is a challenge for the engineering application of the single crystal superalloy and the theoretic bases of the application. Some researches on the strength analysis and the life prediction of the anisotropic single crystal blade were carried out by the authors' research team. They are as follows. The crystallographic constitutive models for the plastic and the creep behaviors and the method of the rupture life prediction were established and verified. The tensile or the creep experiments for DD3 single crystal alloy with different orientations under different temperatures and different tensile rates or under different temperatures and different stress levels were carried out. The experimental data and the anisotropic properties at intermediate and high temperatures revealed by the experiments are significant for the application of the single crystal alloy. In addition, the experimental research for a kind of single crystal blade was also made. As the application of the researches the strength analysis and the life prediction were carried out for the single crystal blade of a certain aero-engine. In this part, the constitutive models and their applications are described, and the experimental research work will be described in part II. 展开更多
关键词 ANISOTROPY CREEP gas turbines Mathematical models Plastic deformation Service life Single crystals strength of materials SUPERALLOYS Temperature Tensile strength Tensile stress
下载PDF
Effect of Tempering Temperature on Strength and Toughness of Novel Carbide-Free Bainite/Martensite Duplex Phase Steel 被引量:7
12
作者 LIU Dong-yu BAI Bing-zhe +3 位作者 FANG Hong-sheng YANG Zhi-gang ZHANG Chi YAN Wen-yan 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2002年第1期46-49,共4页
The microstructure in the weld metals for HQ130+QJ63 high strength steels, which are welded by Ar CO 2 gas shielded metal arc welding, was analyzed by means of microscope and scan electron microscope (SEM). The rela... The microstructure in the weld metals for HQ130+QJ63 high strength steels, which are welded by Ar CO 2 gas shielded metal arc welding, was analyzed by means of microscope and scan electron microscope (SEM). The relative content of different microstructure was evaluated with XQF 2000 micro image analyzer. The effect of acicular ferrite content on the impact toughness was also studied. The test results indicated that the main microstructure in the weld metals of HQ130+QJ63 high strength steels is acicular ferrite and a few pro eutectic ferrite on the boundary of original austenite grain. Near the fusion zone there are columnar grains whose direction coefficient (X) is 3 22, but the microstructure in the center of the weld metal is isometric grain, whose direction coefficient X=1 In order to avoid welding crack and improve welding technology the weld heat input should be strictly controlled in 10-16 kJ/cm. Thus, the main microstructure in the weld metals is fine acicular ferrite and the content of pro eutectic ferrite is limited. The impact toughness in the weld metals of HQ130+QJ63 steels can be ensured and can meet the requirements for application in engineering and machinery. 展开更多
关键词 high strength steel gas shielded metal arc welding weld metal micro image
下载PDF
A novel type of neural networks for feature engineering of geological data:Case studies of coal and gas hydrate-bearing sediments 被引量:3
13
作者 Lishuai Jiang Yang Zhao +2 位作者 Naser Golsanami Lianjun Chen Weichao Yan 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第5期1511-1531,共21页
The nature of the measured data varies among different disciplines of geosciences.In rock engineering,features of data play a leading role in determining the feasible methods of its proper manipulation.The present stu... The nature of the measured data varies among different disciplines of geosciences.In rock engineering,features of data play a leading role in determining the feasible methods of its proper manipulation.The present study focuses on resolving one of the major deficiencies of conventional neural networks(NNs)in dealing with rock engineering data.Herein,since the samples are obtained from hundreds of meters below the surface with the utmost difficulty,the number of samples is always limited.Meanwhile,the experimental analysis of these samples may result in many repetitive values and 0 s.However,conventional neural networks are incapable of making robust models in the presence of such data.On the other hand,these networks strongly depend on the initial weights and bias values for making reliable predictions.With this in mind,the current research introduces a novel kind of neural network processing framework for the geological that does not suffer from the limitations of the conventional NNs.The introduced single-data-based feature engineering network extracts all the information wrapped in every single data point without being affected by the other points.This method,being completely different from the conventional NNs,re-arranges all the basic elements of the neuron model into a new structure.Therefore,its mathematical calculations were performed from the very beginning.Moreover,the corresponding programming codes were developed in MATLAB and Python since they could not be found in any common programming software at the time being.This new kind of network was first evaluated through computer-based simulations of rock cracks in the 3 DEC environment.After the model’s reliability was confirmed,it was adopted in two case studies for estimating respectively tensile strength and shear strength of real rock samples.These samples were coal core samples from the Southern Qinshui Basin of China,and gas hydrate-bearing sediment(GHBS)samples from the Nankai Trough of Japan.The coal samples used in the experiments underwent nuclear magnetic resonance(NMR)measurements,and Scanning Electron Microscopy(SEM)imaging to investigate their original micro and macro fractures.Once done with these experiments,measurement of the rock mechanical properties,including tensile strength,was performed using a rock mechanical test system.However,the shear strength of GHBS samples was acquired through triaxial and direct shear tests.According to the obtained result,the new network structure outperformed the conventional neural networks in both cases of simulation-based and case study estimations of the tensile and shear strength.Even though the proposed approach of the current study originally aimed at resolving the issue of having a limited dataset,its unique properties would also be applied to larger datasets from other subsurface measurements. 展开更多
关键词 Tensile strength Shear strength gas Hydrate Feature engineering Rock engineering data Neuron model
下载PDF
Stability analysis of submarine slopes in the area of the test production of gas hydrate in the South China Sea 被引量:8
14
作者 Yao-hong Shi Qian-yong Liang +3 位作者 Jiang-pin Yang Qing-meng Yuan Xue-min Wu Liang Kong 《China Geology》 2019年第3期276-286,共11页
In this paper, the mechanical properties of gas hydrate-bearing sediments (GHBS) were summarized and the instability mechanism of submarine hydrate-bearing slope (SHBS) was analyzed under the background of the test pr... In this paper, the mechanical properties of gas hydrate-bearing sediments (GHBS) were summarized and the instability mechanism of submarine hydrate-bearing slope (SHBS) was analyzed under the background of the test production of gas hydrate in the northern part of the South China Sea. The strength reduction finite element method (SRFEM) was introduced to the stability analysis of submarine slopes for the safety of the test production. Two schemes were designed to determine the physical and mechanical parameters of four target wells. Through the division of the hydrate dissociation region and the design of four working conditions, the range and degree of hydrate dissociation at different stages during the test production were simulated. Based on the software ABAQUS, 37 FEM models of SHBS were set up to analyze and assess the stability of the submarine slopes in the area of the test production. Necessary information such as safety factors, deformation, and displacement were obtained at different stages and under different working conditions. According to the calculation results, the submarine slope area is stable before the test production, and the safety factors almost remains the same during and after the test production. All these indicate that the test production has no obvious influence on the area of the test production and the submarine slopes in the area are stable during and after the test production. 展开更多
关键词 gas HYDRATE test PRODUCTION strength reduction finite element method SUBMARINE slope Stability gas HYDRATE exploration engineering South China Sea China
下载PDF
Coal and gas outburst prevention using new high water content cement slurry for injection into the coal seam 被引量:3
15
作者 Zhou Peiling Zhang Yinghua +3 位作者 Huang Zhi'an Gao Yukun Wang Hui Luo Qiang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第4期669-673,共5页
As coal and gas outburst is one of the most serious mine disasters, it is very important to at least control it if not prevent it from occurring. Injecting cement slurry or grouting into the coal seam can strengthen t... As coal and gas outburst is one of the most serious mine disasters, it is very important to at least control it if not prevent it from occurring. Injecting cement slurry or grouting into the coal seam can strengthen the seam, increase its rigidity coefficient(f), and reduce the volumetric expansion due to gas energy release.This paper reports the results of laboratory experiments on cement-based high water content slurry having different water-cement ratios(W/C) to be used for coal injection. The results show that as the W/C increases, the mobility of the slurry and its setting time increase. The compressive strength and rupture strength, however, are reduced. Furthermore, high W/C grout shows early strength after 7 days, which can be 80% of its 14-day compressive strength. To achieve rapid setting and early strength, the addition of Na_2SiO_3has proven to give the best result, when the concentration of the additive is 3%. The initial and final setting times are 13 and 21 min shorter than samples without Na_2SiO_3, while the compressive strength is more than double. As a retarder, the initial setting time can be extended to 83 min when tartaric acid of 0.4% concentration is added. Through the orthogonal experiment, the optimum recipe of the new high water content slurry has been determined to be: W/C = 2, tartaric acid = 0.2%, Na_2SiO_3= 3%, and12% bentonite. Reinforcement by injection simulation experiments show that the grouting radius of the new slurry mix is 250 mm when the applied grouting pressure is 60 k Pa, 7-day rupture strength and compressive strength are 5.2 and 6.4 MPa, respectively, and are 37% and 88% higher than ordinary cement grout. It can be concluded that the newly developed slurry mix is more effective than the ordinary mix for reinforcing coal and controlling gas outburst. 展开更多
关键词 gas outburst Setting liquid Reinforce coal High-water solidified materials Rapid setting and early strength cement RETARDER
下载PDF
Activation of Rejected Fly Ash Using Flue Gas Desulphurization (FGD) Sludge 被引量:2
16
作者 乔秀臣 POONChisun LINZong-shou 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第4期84-88,共5页
Low-grade fly ash (rejected fly ash,rFA),a significant portion of the pulverized fuel ash (PFA) produced from coal-fired power plants and rejected from the ash classifying process,remains unused due to its high carbon... Low-grade fly ash (rejected fly ash,rFA),a significant portion of the pulverized fuel ash (PFA) produced from coal-fired power plants and rejected from the ash classifying process,remains unused due to its high carbon content and large particle size (>45μm).But it is thought that the rejected ash may have potential uses in chemical stabilization/solidification (S/S) processes which need relatively lower strengths and a lower chemical reactivity.Flue Gas Desulphurisation (FGD) sludge is a by-product of air pollution control equipment in coal fired power plants whose chemical composition is mainly gypsum.As there is no effective usage of both of these two materials,it is of interest to research on the possible activation of rFA using FGD.This paper presents experimental results of a study on the properties of rFA activated by the FGD in rFA-cement pastes.Different percentages of FGD were added into the mix to study the effects of the FGD on the reaction of the rFA blended cement pastes.The results show that FGD takes effect as an activator only at late curing ages.Adding Ca(OH) 2 enhances the effect of FGD on activating the hydration of rFA.Also,10% FGD by weight of rFA is the optimal addition in the rFA-cement pastes.The results of the compressive strength measurements correlate well with the porosity results. 展开更多
关键词 rejected fly ash PFA strength development ACTIVATOR flue gas desulphurization sludge FGD
下载PDF
Influence of Thermally Treated Flue Gas Desulfurization(FGD) Gypsum on Performance of the Slag Powder Concrete 被引量:2
17
作者 GUO Xiaolu SHI Huisheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1122-1127,共6页
The feasibility of flue gas desulphurization (FGD) as concrete admixture was studied. A combined concrete admixture of the thermally-treated FGD gypsum and slag powder was explored. The FGD gypsum was roasted at 200... The feasibility of flue gas desulphurization (FGD) as concrete admixture was studied. A combined concrete admixture of the thermally-treated FGD gypsum and slag powder was explored. The FGD gypsum was roasted at 200℃ for 60 min and then mixed with the slag powder to form FGD gypsum-slag powder combined admixture in which the SO3 content was 3.5wt%. Cement was partially and equivalently replaced by slag powder alone or FGD gypsum-slag powder, at concentration of 25wt%, 40wt%, and 50wt%, respectively. The setting times, hydration products, total porosity and pore size distributions of the paste were determined. The compressive strength and drying shrinkage of cement mortar and concrete were also tested. The experimental results show that, in the presence of FGD gypsum, the setting times are much slower than those of pastes in the absence of FGD gypsum. The combination of FGD gypsum and slag powder provides synergistic benefits above that of slag powder alone. The addition of FGD gypsum provides benefit by promoting ettringite formation and forms a compact microstructure, increasing the compressive strength and reduces the drying shrinkage of cement mortar and concrete. 展开更多
关键词 flue gas desulfurization (FGD) gypsum slag powder compressive strength drying shrinkage MORTAR CONCRETE
下载PDF
Investigation of secondary phases and tensile strength of nitrogen-containing Alloy 718 weldment 被引量:1
18
作者 Behrooz Nabavi Massoud Goodarzi Abdul Khaliq Khan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第9期1259-1268,共10页
The influence of nitrogen content on the precipitation of secondary phases and the tensile strength of Alloy 718 during gas tungstenarc welding was investigated. Various types of precipitates were characterized using ... The influence of nitrogen content on the precipitation of secondary phases and the tensile strength of Alloy 718 during gas tungstenarc welding was investigated. Various types of precipitates were characterized using scanning electron microscopy and transmission electronmicroscopy. The results showed that in the fusion zone, the volume fraction of Nb-rich phases such as Laves, (Nb,Ti)C, and δ phases, as wellas Ti-rich phases such as (Ti,Nb)CN and (Ti,Nb)N, increased with increase in the nitrogen content due to the microsegregation of Nb and Tiwithin interdendritic areas. Nitrogen was also found to decrease the size of γ′′ particles within γ dendrites. For precipitates in the partiallymelted zone, constitutional liquation was observed for both (Nb,Ti)C and (Ti,Nb)N particles. Based on the results of tensile tests, the weld containing0.015wt% nitrogen exhibited the highest ultimate tensile strength (UTS), whereas more addition of nitrogen led to a decrease in both theUTS and yield strength due to the increased content of brittle Laves phases and decreased size of γ′′. 展开更多
关键词 NITROGEN secondary phases gas tungsten arc welding tensile strength Alloy 718
下载PDF
Effect of Auxiliary Gas Flow Parameters on Microstructure and Properties of Ta Coatings Prepared by Three-Cathode Atmosphere Plasma Spraying 被引量:1
19
作者 Jing Cui Haiyang Xia +1 位作者 Lang Cui Guang Liu 《Journal of Beijing Institute of Technology》 EI CAS 2022年第3期302-316,共15页
Based on the three-cathode plasma spraying system,tantalum(Ta)coatings were pre-pared on the substrate of CuCrZr alloy.The effects of different auxiliary gas(helium)flow rates on the microstructure,phase composition,m... Based on the three-cathode plasma spraying system,tantalum(Ta)coatings were pre-pared on the substrate of CuCrZr alloy.The effects of different auxiliary gas(helium)flow rates on the microstructure,phase composition,mechanical and wear resistance properties of Ta coatings were studied.The results showed that the oxidation degree of the coatings decreases first and then increases with the increase of the auxiliary gas flow.When the auxiliary gas flow rate is 70 L·min-1,the oxidation degree of the coating is the lowest,minimum value of the porosity is 0.21%,and the bonding strength reaches the maximum,59.3 MPa.At this time,the coating wear rate is 0.0012 mm^(3)·N^(-1)·m^(-1)with the best wear resistance.This indicates that the auxiliary gas flow has an important influence on the quality and surface mechanical properties of tantalum coating. 展开更多
关键词 plasma spraying tantalum(Ta)coating auxiliary gas flow rate bonding strength tri-bological property
下载PDF
Safety Length Simulation of Natural Gas Pipeline Subjected to Transverse Landslide 被引量:1
20
作者 Guizhi Li Peng Zhang +2 位作者 Zhixiang Li Zunhai Ke Gengxin Wu 《World Journal of Engineering and Technology》 2023年第1期67-80,共14页
The safety of natural gas pipeline is often severely threatened by the transverse landslide. At home and abroad, it is the first time to study the safe length of the pipeline when affected by landslide, and take ... The safety of natural gas pipeline is often severely threatened by the transverse landslide. At home and abroad, it is the first time to study the safe length of the pipeline when affected by landslide, and take the safe length of the pipeline as an engineering practical index. Therefore, it is of great significance to study the influence of transverse landslide affecting the safety of natural gas pipeline when a certain length of pipeline is thrusted, and to establish practical index and simulation method for prediction and prevention of the landslide hazards to gas pipeline. Based on the current research results, this study could be divided into three steps: First of all, with the help of ANSYS finite element software, the model of transverse landslide acting on the gas pipeline can be set up, then the length value of gas pipeline safely withstanding transverse landslide can be calculated;Secondly, using the strength reduction method, which is commonly used in the research of landslide stability, can establish three-dimensional model of the landslide and pipes in the ABAQUS finite element software, next, under the same landslide pushed length, the calculation results will be obtained;Finally, to draw reliable conclusions, all calculated results of the former two methods will be linked to synthetically and comparatively analyze, then the length value of common X80 gas pipeline safely bearing transverse landslide can be got. All results can provide some references for engineering and design. 展开更多
关键词 Transverse Landslide gas Pipeline Finite Elements Simulation strength Reduction Method
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部