During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and...During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and accumulation of hydrates further contribute to the obstruction of natural gas pipelines,resulting in production reduction,shutdowns,and pressure build-ups.Consequently,a cascade of risks is prone to occur.To address this issue,this study focuses on the operational process of natural gas gathering and transmission pipelines,where a comprehensive framework is established.This framework includes theoretical models for pipeline temperature distribution,pipeline pressure distribution,multiphase flow within the pipeline,hydrate blockage,and numerical solution methods.By analyzing the influence of inlet temperature,inlet pressure,and terminal pressure on hydrate formation within the pipeline,the sensitivity patterns of hydrate blockage risks are derived.The research indicates that reducing inlet pressure and terminal pressure could lead to a decreased maximum hydrate formation rate,potentially mitigating pipeline blockage during natural gas transportation.Furthermore,an increase in inlet temperature and terminal pressure,and a decrease in inlet pressure,results in a displacement of the most probable location for hydrate blockage towards the terminal station.However,it is crucial to note that operating under low-pressure conditions significantly elevates energy consumption within the gathering system,contradicting the operational goal of energy efficiency and reduction of energy consumption.Consequently,for high-pressure gathering pipelines,measures such as raising the inlet temperature or employing inhibitors,electrical heat tracing,and thermal insulation should be adopted to prevent hydrate formation during natural gas transportation.Moreover,considering abnormal conditions such as gas well production and pipeline network shutdowns,which could potentially trigger hydrate formation,the installation of methanol injection connectors remains necessary to ensure production safety.展开更多
Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent N...Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent NGH blockages.Previous studies suggested the water film can greatly increase hydrate adhesion in gas-dominant system.Herein,by performing the molecular dynamics simulations,we find in water-dominant system,the water film plays different roles in hydrate deposition on Fe and its corrosion surfaces.Specifically,due to the strong affinity of water on Fe surface,the deposited hydrate cannot convert the adsorbed water into hydrate,thus,a water film exists.As water affinities decrease(Fe>Fe_(2)O_(3)>FeO>Fe_(3)O_(4)),adsorbed water would convert to amorphous hydrate on Fe_(2)O_(3)and form the ordered hydrate on FeO and Fe_(3)O_(4)after hydrate deposition.While absorbed water film converts to amorphous or to hydrate,the adhesion strength of hydrate continuously increases(Fe<Fe_(2)O_(3)<FeO<Fe_(3)O_(4)).This is because the detachment of deposited hydrate prefers to occur at soft region of liquid layer,the process of which becomes harder as liquid layer vanishes.As a result,contrary to gas-dominant system,the water film plays the weakening roles on hydrate adhesion in water-dominant system.Overall,our results can help to better understand the hydrate deposition mechanisms on Fe and its corrosion surfaces and suggest hydrate deposition can be adjusted by changing water affinities on pipeline surfaces.展开更多
A hydrate shell model coupled with one-dimensional two-fluid pipe flow model was established to study the flow characteristics of gas-hydrate slurry flow system.The hydrate shell model was developed with kinetic limit...A hydrate shell model coupled with one-dimensional two-fluid pipe flow model was established to study the flow characteristics of gas-hydrate slurry flow system.The hydrate shell model was developed with kinetic limitations and mass transfer limitations,and it was solved by Euler method.The analysis of influence factors was performed.It was found that the diffusion coefficient was a key parameter in hydrate forming process.Considering the hydrate kinetics model and the contacting area between gas and water,the hydrate shell model was more close to its practical situations.展开更多
The target of the text is to scientifically appraise dynamic development of surface deformation in subsidence area and its influence on groundwork stability of natural pipe and then adopt some technological measures t...The target of the text is to scientifically appraise dynamic development of surface deformation in subsidence area and its influence on groundwork stability of natural pipe and then adopt some technological measures to ensure safe circulation of natural pipeline. Analysed the influence on natural pipeline from coal mining subsidence in the way of pipeline grade variation, vertical curve variation, transverse deformation, horizontal pull and compression deformation and pipe stress variation etc., and described detailed surface subsidence product and its used time among initial phase, active phase and decline phase in the course of surface movement deformation time. In the context of considering surface subsidence that doesn't reach basic latter end and residual subsidence quantity, the text confirmed the calculation method of residual deformation in surface subsidence area, and gave the technological measures about building natural gas pipeline in subsidence area finally.展开更多
Natural gas hydrate is a kind of clean energy with huge reserves,and the saturation(volume percentage of hydrate in pore space of sediments)is the key parameter for determining whether the reservoir is worthy of explo...Natural gas hydrate is a kind of clean energy with huge reserves,and the saturation(volume percentage of hydrate in pore space of sediments)is the key parameter for determining whether the reservoir is worthy of exploitation.In this work,rapid hydrate dissociation by the combination of heat injection and NaCl inhibitor addition was studied,and an on-site evaluation method for hydrate saturation in sediment samples was proposed by using a core sampler to transfer hydrate samples under pressure.The results showed that the average gas production rate per unit volume was increased significantly to reach 7.22 L/Lr$min-1 by the injection of NaCl aqueous solution with 50.9C,which was attributed to the increase of the chemical potential to further accelerate the rate of hydrate dissociation in the presence of NaCl.Furthermore,for the measurement of methane hydrate samples saturation with a volume of 673 cm3(which contained 1.4 mol hydrates with the saturation of 58%),hydrate saturation could be accurately achieved within 30 min with a relative error lower than 11.7%This work may provide new thoughts for on-site saturation evaluation and rapid dissociation of hydrate samples during natural gas hydrate exploitation.展开更多
基金supported by 111 Project (No.D21025)Open Fund Project of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Nos.PLN2021-01,PLN2021-02,PLN2021-03)+2 种基金High-end Foreign Expert Introduction Program (No.G2021036005L)National Key Research and Development Program (No.2021YFC2800903)National Natural Science Foundation of China (No.U20B6005-05)。
文摘During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and accumulation of hydrates further contribute to the obstruction of natural gas pipelines,resulting in production reduction,shutdowns,and pressure build-ups.Consequently,a cascade of risks is prone to occur.To address this issue,this study focuses on the operational process of natural gas gathering and transmission pipelines,where a comprehensive framework is established.This framework includes theoretical models for pipeline temperature distribution,pipeline pressure distribution,multiphase flow within the pipeline,hydrate blockage,and numerical solution methods.By analyzing the influence of inlet temperature,inlet pressure,and terminal pressure on hydrate formation within the pipeline,the sensitivity patterns of hydrate blockage risks are derived.The research indicates that reducing inlet pressure and terminal pressure could lead to a decreased maximum hydrate formation rate,potentially mitigating pipeline blockage during natural gas transportation.Furthermore,an increase in inlet temperature and terminal pressure,and a decrease in inlet pressure,results in a displacement of the most probable location for hydrate blockage towards the terminal station.However,it is crucial to note that operating under low-pressure conditions significantly elevates energy consumption within the gathering system,contradicting the operational goal of energy efficiency and reduction of energy consumption.Consequently,for high-pressure gathering pipelines,measures such as raising the inlet temperature or employing inhibitors,electrical heat tracing,and thermal insulation should be adopted to prevent hydrate formation during natural gas transportation.Moreover,considering abnormal conditions such as gas well production and pipeline network shutdowns,which could potentially trigger hydrate formation,the installation of methanol injection connectors remains necessary to ensure production safety.
基金This work was supported by the National Natural Science Foundation of China(51874332,51991363)the CNPC's Major Science and Technology Projects(ZD2019-184-003)+1 种基金the Fundamental Research Funds for Central Universities(20CX05008A)“14th Five-Year plan”forward-looking basic major science and technology project of CNPC(2021DJ4901).
文摘Natural gas hydrate(NGH)can cause pipeline blockages during the transportation of oil and gas under high pressures and low temperatures.Reducing hydrate adhesion on pipelines is viewed as an efficient way to prevent NGH blockages.Previous studies suggested the water film can greatly increase hydrate adhesion in gas-dominant system.Herein,by performing the molecular dynamics simulations,we find in water-dominant system,the water film plays different roles in hydrate deposition on Fe and its corrosion surfaces.Specifically,due to the strong affinity of water on Fe surface,the deposited hydrate cannot convert the adsorbed water into hydrate,thus,a water film exists.As water affinities decrease(Fe>Fe_(2)O_(3)>FeO>Fe_(3)O_(4)),adsorbed water would convert to amorphous hydrate on Fe_(2)O_(3)and form the ordered hydrate on FeO and Fe_(3)O_(4)after hydrate deposition.While absorbed water film converts to amorphous or to hydrate,the adhesion strength of hydrate continuously increases(Fe<Fe_(2)O_(3)<FeO<Fe_(3)O_(4)).This is because the detachment of deposited hydrate prefers to occur at soft region of liquid layer,the process of which becomes harder as liquid layer vanishes.As a result,contrary to gas-dominant system,the water film plays the weakening roles on hydrate adhesion in water-dominant system.Overall,our results can help to better understand the hydrate deposition mechanisms on Fe and its corrosion surfaces and suggest hydrate deposition can be adjusted by changing water affinities on pipeline surfaces.
基金supported by the National Science & Technology Major Project (No. 2008ZX05026-004-03)
文摘A hydrate shell model coupled with one-dimensional two-fluid pipe flow model was established to study the flow characteristics of gas-hydrate slurry flow system.The hydrate shell model was developed with kinetic limitations and mass transfer limitations,and it was solved by Euler method.The analysis of influence factors was performed.It was found that the diffusion coefficient was a key parameter in hydrate forming process.Considering the hydrate kinetics model and the contacting area between gas and water,the hydrate shell model was more close to its practical situations.
文摘The target of the text is to scientifically appraise dynamic development of surface deformation in subsidence area and its influence on groundwork stability of natural pipe and then adopt some technological measures to ensure safe circulation of natural pipeline. Analysed the influence on natural pipeline from coal mining subsidence in the way of pipeline grade variation, vertical curve variation, transverse deformation, horizontal pull and compression deformation and pipe stress variation etc., and described detailed surface subsidence product and its used time among initial phase, active phase and decline phase in the course of surface movement deformation time. In the context of considering surface subsidence that doesn't reach basic latter end and residual subsidence quantity, the text confirmed the calculation method of residual deformation in surface subsidence area, and gave the technological measures about building natural gas pipeline in subsidence area finally.
基金the National Natural Science Foundation of China(21736005)the National Key R&D Program of China(2016YFC0304006 and 2017YFC0307302).
文摘Natural gas hydrate is a kind of clean energy with huge reserves,and the saturation(volume percentage of hydrate in pore space of sediments)is the key parameter for determining whether the reservoir is worthy of exploitation.In this work,rapid hydrate dissociation by the combination of heat injection and NaCl inhibitor addition was studied,and an on-site evaluation method for hydrate saturation in sediment samples was proposed by using a core sampler to transfer hydrate samples under pressure.The results showed that the average gas production rate per unit volume was increased significantly to reach 7.22 L/Lr$min-1 by the injection of NaCl aqueous solution with 50.9C,which was attributed to the increase of the chemical potential to further accelerate the rate of hydrate dissociation in the presence of NaCl.Furthermore,for the measurement of methane hydrate samples saturation with a volume of 673 cm3(which contained 1.4 mol hydrates with the saturation of 58%),hydrate saturation could be accurately achieved within 30 min with a relative error lower than 11.7%This work may provide new thoughts for on-site saturation evaluation and rapid dissociation of hydrate samples during natural gas hydrate exploitation.