期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Mechanical stirring for highly efficient gas injection refining 被引量:5
1
作者 刘燕 张廷安 +3 位作者 佐野正道 王强 任晓冬 赫冀成 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第8期1896-1904,共9页
In gas injection refining processes,wide dispersion of small bubbles in the bath is indispensable for high refining efficiency.Eccentric mechanical stirring with unidirectional impeller rotation was tested using a wat... In gas injection refining processes,wide dispersion of small bubbles in the bath is indispensable for high refining efficiency.Eccentric mechanical stirring with unidirectional impeller rotation was tested using a water model for pursuing better bubble disintegration and dispersion.Effects of various factors on bubble disintegration and dispersion were investigated.These factors were stirring mode,eccentricity and rotation speed,nozzle structure,nozzle immersion depth,and gas flow rate.Gas injection from a nozzle at the end of the impeller shaft and from an immersed lance was studied.Under eccentric stirring,a vortex was formed away from the shaft.Small bubbles were produced in the strong turbulence or high shear stress field near the rotating impeller and moved in the direction to the vortex keeping up with the macroscopic flow induced by the mechanical stirring.Thus small bubbles could disperse widely in the bath under eccentric stirring with unidirectional rotation. 展开更多
关键词 gas injection refining eccentric mechanical stirring unidirectional impeller rotation bubble dispersion bubble disintegration macroscopic flow
下载PDF
Improvement of Impeller Blade Structure for Gas Injection Refining under Mechanical Stirring 被引量:4
2
作者 Yan LIU Zi-mu ZHANG +3 位作者 Sano MASAMICHI Jun ZHANG Pin SHAO Ting-an ZHANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第2期135-143,共9页
Abstract: The impeller blade structure for gas injection refining under mechanical stirring has been explored by water model experiments. A sloped swept-back blade impeller is'proposed for the purpose. The central p... Abstract: The impeller blade structure for gas injection refining under mechanical stirring has been explored by water model experiments. A sloped swept-back blade impeller is'proposed for the purpose. The central part of the impeller is disk- or plate-shaped, and the blades are fitted to the side of the disk or plate. In addition, a disk is put on the top side of the impeller blades. The impeller can strengthen the radial and downward flow between the blades and weaken the swirl flow in the zone above the impeller. These effects on flow phenomena are favorable for disintegration and wide dispersion of bubbles which are injected from a nozzle attached to the center of the underside of the impeller. In addition, the sloped swept-back impeller requires less power consumption. The impeller shaft should be placed away from the vessel center so as to disperse the injected bubbles widely in the bath under mechanical stirring even with unidi- rectional impeller rotation and without installing baffles. The number of gas holes in the nozzle and the direction of gas injection have a little effect on the bubble disintegration and dispersion in the bath. Highly efficient gas injection refining can be established under the conditions of proper impeller size, larger nozzle immersion depth, larger eccen- tricity and rotation speed of the impeller. The sloped swept back blade impeller can decrease the power consumption and vet improve the bubble disintegration and wide dist^ersion in the bath. 展开更多
关键词 gas injection refining cold model eccentric mechanical stirring impeller structure power consump-tion bubble disintegration bubble dispersion
原文传递
Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion 被引量:8
3
作者 Jie ZHU Xiangju MENG Fengshou XIAO 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2013年第2期233-248,共16页
Zeolites have been regarded as one of the most important catalysts in petrochemical industry due to their excellent catalytic performance. However, the sole micro- pores in zeolites severely limit their applications i... Zeolites have been regarded as one of the most important catalysts in petrochemical industry due to their excellent catalytic performance. However, the sole micro- pores in zeolites severely limit their applications in oil refining and natural gas conversion. To solve the problem, mesoporous zeolites have been prepared by introducing mesopores into the zeolite crystals in recent years, and thus have the advantages of both mesostructured materials (fast diffusion and accessible for bulky molecules) and micro- porous zeolite crystals (strong acidity and high hydro- thermal stability). In this review, after giving a brief introduction to preparation, structure, and characterization of mesoporous zeolites, we systematically summarize catalytic applications of these mesoporous zeolites as efficient catalysts in oil refining and natural gas conversion including catalytic cracking of heavy oil, alkylation, isomerization, hydrogenation, hydrodesulfurization, methane dehydroaromatization, methanol dehydration to dimethyl ether, methanol to olefins, and methanol to hydrocarbons. 展开更多
关键词 mesoporous zeolite CATALYSIS oil refining natural gas conversion
原文传递
Cold Model Study on Mg Desulfurization of Hot Metal Under Mechanical Stirring 被引量:5
4
作者 LIU Yan ZHANG Zi-mu +3 位作者 LIU Jian-nan ZHANG Jun-hua Masamichi Sano ZHANG Jun 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第12期1-6,共6页
The new method of in-situ desulfurization with mechanical stirring of new type impellers was introduced, in which the bubble's dispersion and disintegration of magnesium vapor were the key to boosting the desulfuriza... The new method of in-situ desulfurization with mechanical stirring of new type impellers was introduced, in which the bubble's dispersion and disintegration of magnesium vapor were the key to boosting the desulfurization efficiency and increasing the utilization rate of magnesium. Effects of different new type of impellers on bubble dis persion and disintegration were studied through bubble image analysis, gas-liquid mass transfer, and power con- sumption levels of different impeller structures. The results showed that the sloped swept-back blade impeller-2 pro- duces optimal bubble's dispersion and disintegration, as well as higher volumetric mass transfer coefficient and CO2 gas utilization while consuming the least power. Numerical simulation result with Fluent software also showed that the sloped swept-back blade impeller-2 has higher turbulent kinetic energy and better velocity distribution than the other two impellers. 展开更多
关键词 gas injection refining eccentric mechanical stirring bubble disintegration bubble dispersion volumetric mass transfer coefficient Mg desulfurization hot metal
原文传递
Bubble behavior in cylindrical and square vessels under centric mechanical stirring 被引量:1
5
作者 Kun Wang Yan Liu +1 位作者 Masamichi Sano Ting-an Zhang 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2021年第10期1243-1250,共8页
Water model experiments were carried out to investigate the bubble behavior in cylindrical and square vessels under centric mechanical stirring.The bubble behavior in the square vessel was investigated in detail by us... Water model experiments were carried out to investigate the bubble behavior in cylindrical and square vessels under centric mechanical stirring.The bubble behavior in the square vessel was investigated in detail by using a high-speed camera to record the transient images of the bubbles.An image analysis software was used to obtain the bubble diameter.The results showed that the centric mechanical stirring in the square vessel was suitable for breakage and dispersion of bubbles,but not suitable for that in the cylindrical vessel.Increasing the impeller blade length and impeller rotation speed was beneficial to disintegrate and disperse bubbles widely.The bubble diameter decreased with the increase in the Weber number and increased slightly with the increase in the modified Froude number.The dimensionless correlation equation of bubble diameter was obtained by the dimensional analysis method. 展开更多
关键词 gas injection refining Mechanical stirring Mg desulfurization Bubble breakage Bubble dispersion Dimensional analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部