This paper describes the design, construction and preliminary test results for a gas-tight serial sampler intended to be deployed at seafloor for long-term operation to take time-series fluid samples from deep-sea env...This paper describes the design, construction and preliminary test results for a gas-tight serial sampler intended to be deployed at seafloor for long-term operation to take time-series fluid samples from deep-sea environments such as cold seeps, water column and hydrothermal vents. The serial sampler is a modular system that is based on independent and identical sampling modules, which are designed to collect six 160 ml gas-tight fluid samples maintained at high pressure to a depth of 4000 meters. With two working modes, the sampler can be deployed either with seafloor cabled observatory for remote control or as a stand-alone device for autonomous operation. A prototype of the instrument has been constructed and tested on the MARS cabled observatory for two months. The laboratory and field tests proved the success of the design and construction of the serial sampler, and indicated the potential for future ocean sciences.展开更多
基金financially supported by the National High Technology Research and Development Program of China(863 Program,Grant No.2010AA09Z202)the National Natural Science Foundation of China(Grant No.41106081)+2 种基金the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51221004)the United States National Science Foundation(Grant No.0927615)the Knowledge Innovation Project from Sanya Institute of Deep-sea Science and Engineering(Grant No.SIDSSE-201204)
文摘This paper describes the design, construction and preliminary test results for a gas-tight serial sampler intended to be deployed at seafloor for long-term operation to take time-series fluid samples from deep-sea environments such as cold seeps, water column and hydrothermal vents. The serial sampler is a modular system that is based on independent and identical sampling modules, which are designed to collect six 160 ml gas-tight fluid samples maintained at high pressure to a depth of 4000 meters. With two working modes, the sampler can be deployed either with seafloor cabled observatory for remote control or as a stand-alone device for autonomous operation. A prototype of the instrument has been constructed and tested on the MARS cabled observatory for two months. The laboratory and field tests proved the success of the design and construction of the serial sampler, and indicated the potential for future ocean sciences.