期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Determining the Main Gas-generation Phase of Marine Organic Matters in Different Occurrence States using the Kinetic Method 被引量:2
1
作者 WANG Yunpeng ZHAO Changyi +6 位作者 WANG Zhaoyun WANG Hongjun ZOU Yanrong LIU Jinzhong ZHAO Wenzhi LIU Dehan LU Jialan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第1期197-205,共9页
This paper probes the determination of the main gas-generation phase of marine organic mattes using the kinetic method. The main gas-generation phase of marine organic matters was determined by coupling the gas genera... This paper probes the determination of the main gas-generation phase of marine organic mattes using the kinetic method. The main gas-generation phase of marine organic matters was determined by coupling the gas generation yields and rates in geological history computed by the acquired kinetic parameters of typical marine organic matters (reservoir oil, residual bitumen, lowmaturity kerogen and residual kerogen) in both China and abroad and maturity by the EasyRo(%) method. Here, the main gas-generation phase was determined as Ro%=1.4%-2.4% for type Ⅰ kerogen, Ro%=1.5-3.0% for low-maturity type Ⅱ kerogen, Ro%=1.4-2.8% for residual kerogen, Ro%=1.5-3.2% for residual bitumen and Ro%=1.6-3.2% for reservoir oil cracking. The influences on the main gas-generation phase from the openness of the simulated system and the "dead line" of natural gas generation are also discussed. The results indicate that the openness of simulation system has a definite influence on computing the main gas-generation phase. The main gas-generation phase of type Ⅱ kerogen is Ro%=1.4-3.1% in an open system, which is earlier than that in a closed system. According to our results, the "dead line" of natural gas generation is determined as Ro=3.5 % for type Ⅰ kerogen, Ro=4.4-4.5% for type Ⅱ kerogen and Ro=4.6% for marine oil. Preliminary applications are presented taking the southwestern Tarim Basin as an example. 展开更多
关键词 marine organic matter KEROGEN oil cracking hydrocarbon generating kinetics main gasgeneration phase southwestern Tarim Basin gas source kitchen
下载PDF
Two highly efficient accumulation models of large gas fields in China 被引量:2
2
作者 Wang Hongjun Bian Congsheng +2 位作者 Liu Guangdi Sun Mingliang Li Yongxin 《Petroleum Science》 SCIE CAS CSCD 2014年第1期28-38,共11页
Based on reserve abundance,large gas fields in China can be divided into two types:type one of high abundance large gas fields,dominated by structural gas reservoirs; type two of low abundance large gas fields,domina... Based on reserve abundance,large gas fields in China can be divided into two types:type one of high abundance large gas fields,dominated by structural gas reservoirs; type two of low abundance large gas fields,dominated by stratigraphic and lithologic gas reservoirs.The formation of these two types of large gas fields is related to the highly efficient accumulation of natural gas.The accumulation of high abundance gas fields is dependent on the rapid maturation of the source kitchen and huge residual pressure difference between the gas source kitchen and reservoir,which is the strong driving force for natural gas migration to traps.Whereas the accumulation of low abundance gas fields is more complicated,involving both volume flow charge during the burial stage and diffusion flow charge during the uplift stage,which results in large area accumulation and preservation of natural gas in low porosity and low permeability reservoirs.This conclusion should assist gas exploration in different geological settings. 展开更多
关键词 Natural gas gas source kitchen highly efficient accumulation large gas field reserve abundance resource potential
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部