Permeability sensitivity to stress experiments were conducted on standard core samples taken from Wen 23 Gas Storage at multi-cycle injection and production conditions of the gas storage to study the change pattern of...Permeability sensitivity to stress experiments were conducted on standard core samples taken from Wen 23 Gas Storage at multi-cycle injection and production conditions of the gas storage to study the change pattern of stress sensitivity of permeability.A method for calculating permeability under overburden pressure in the multi-cycle injection and production process was proposed,and the effect of stress sensitivity of reservoir permeability on gas well injectivity and productivity in UGS was analyzed.Retention rate of permeability decreased sharply first and then slowly with the increase of the UGS cycles.The stress sensitivity index of permeability decreased with the increase of cycle number of net stress variations in the increase process of net stress.The stress sensitivity index of permeability hardly changed with the increase of cycle number of net stress variations in the decrease process of net stress.With the increase of cycle number of net stress variation,the stress sensitivity index of permeability in the increase process of net stress approached that in the decrease process of net stress.The lower the reservoir permeability,the greater the irreversible permeability loss rate,the stronger the cyclic stress sensitivity,and the higher the stress sensitivity index of the reservoir,the stronger the reservoir stress sensitivity.The gas zones with permeability lower than 0.3’10-3 mm2 are not suitable as gas storage regions.Stress sensitivity of reservoir permeability has strong impact on gas well injectivity and productivity and mainly in the first few cycles.展开更多
Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"a...Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs.展开更多
A simulation study was carried out to investigate the temporal evolution of H_(2)S in the Huangcaoxia underground gas storage (UGS), which is converted from a depleted sulfur-containing gas field. Based on the rock an...A simulation study was carried out to investigate the temporal evolution of H_(2)S in the Huangcaoxia underground gas storage (UGS), which is converted from a depleted sulfur-containing gas field. Based on the rock and fluid properties of the Huangcaoxia gas field, a multilayered model was built. The upper layer Jia-2 contains a high concentration of H_(2)S (27.2 g/m^(3)), and the lower layer Jia-1 contains a low concentration of H_(2)S (14.0 mg/m^(3)). There is also a low-permeability interlayer between Jia-1 and Jia-2. The multi-component fluid characterizations for Jia-1 and Jia-2 were implemented separately using the Peng-Robinson equation of state in order to perform the compositional simulation. The H_(2)S concentration gradually increased in a single cycle and peaked at the end of the production season. The peak H_(2)S concentration in each cycle showed a decreasing trend when the recovery factor (RF) of the gas field was lower than 70%. When the RF was above 70%, the peak H_(2)S concentration increased first and then decreased. A higher reservoir RF, a higher maximum working pressure, and a higher working gas ratio will lead to a higher H_(2)S removal efficiency. Similar to developing multi-layered petroleum fields, the operation of multilayered gas storage can also be divided into multi-layer commingled operation and independent operation for different layers. When the two layers are combined to build the storage, the sweet gas produced from Jia-1 can spontaneously mix with the sour gas produced from Jia-2 within the wellbore, which can significantly reduce the overall H_(2)S concentration in the wellstream. When the working gas volume is set constant, the allocation ratio between the two layers has little effect on the H_(2)S removal. After nine cycles, the produced gas’s H_(2)S concentration can be lowered to 20 mg/m^(3). Our study recommends combining the Jia-2 and Jia-1 layers to build the Huangcaoxia underground gas storage. This plan can quickly reduce the H_(2)S concentration of the produced gas to 20 mg/m^(3), thus meeting the gas export standards as well as the HSE (Health, Safety, and Environment) requirements in the field. This study helps the engineers understand the H_(2)S removal for sulfur-containing UGS as well as provides technical guidelines for converting other multilayered sour gas fields into underground storage sites.展开更多
Based on the differences in production mode and operation process between gas storage and gas reservoir,we established a phase balance test procedure and a theoretical simulation model of phase balance during multi-cy...Based on the differences in production mode and operation process between gas storage and gas reservoir,we established a phase balance test procedure and a theoretical simulation model of phase balance during multi-cycles of injection and production of underground gas storage(UGS)rebuilt from condensate gas reservoir to study the phase characteristics of produced and remaining fluids during multi-cycles of injection and production.Take condensate reservoir gas storage as example,the composition of produced fluid and remaining fluid,phase state of remaining fluid,retrograde condensate saturation and condensate recovery degree in the process of multi-cycles of injection-production were studied through multi-cycle injection-production experiment and phase equilibrium theory simulation.The injected gas could greatly improve the recovery of condensate oil in the gas reservoir,and the condensate oil recovery increased by 42% after 5 cycles of injection and production;the injected gas had significant evaporative and extraction effects on the condensate,especially during the first two cycles;the condensate oil saturation of the formation decreased with the increase of injection-production cycles,and the condensate oil saturation after multi-cycles of injection-production was almost 0;the storage capacity increased by about 7.5% after multi-cycles of injection and production,and the cumulative gas injection volume in the 5 th cycle increased by about 25%compared with that in the 1 st cycle.展开更多
One of the major technical challenges in using carbon dioxide( CO2) as part of the cushion gas of the underground gas storage reservoir( UGSR) is the mixture of CO2and natural gas. To decrease the mixing extent and ma...One of the major technical challenges in using carbon dioxide( CO2) as part of the cushion gas of the underground gas storage reservoir( UGSR) is the mixture of CO2and natural gas. To decrease the mixing extent and manage the migration of the mixed zone,an understanding of the mechanism of CO2and natural gas mixing and the diffusion of the mixed gas in aquifer is necessary. In this paper,a numerical model based on the three dimensional gas-water two-phase flow theory and gas diffusion theory is developed to understand this mechanism. This model is validated by the actual operational data in Dazhangtuo UGSR in Tianjin City,China.Using the validated model,the mixed characteristic of CO2and natural gas and the migration mechanism of the mixed zone in an underground porous reservoir is further studied. Particularly,the impacts of the following factors on the migration mechanism are studied: the ratio of CO2injection,the reservoir porosity and the initial operating pressure. Based on the results,the optimal CO2injection ratio and an optimal control strategy to manage the migration of the mixed zone are obtained. These results provide technical guides for using CO2as cushion gas for UGSR in real projects.展开更多
By conducting relative permeability experiments of multi-cycle gas-water displacement and imbibition on natural cores,we discuss relative permeability hysteresis effect in underground gas storage during multi-cycle in...By conducting relative permeability experiments of multi-cycle gas-water displacement and imbibition on natural cores,we discuss relative permeability hysteresis effect in underground gas storage during multi-cycle injection and production.A correction method for relative permeability hysteresis in numerical simulation of water-invaded gas storage has been worked out using the Carlson and Killough models.A geologic model of water-invaded sandstone gas storage with medium-low permeability is built to investigate the impacts of relative permeability hysteresis on fluid distribution and production performance during multi-cycle injection and production of the gas storage.The study shows that relative permeability hysteresis effect occurs during high-speed injection and production in gas storage converted from water-invaded gas reservoir,and leads to increase of gas-water transition zone width and thickness,shrinkage of the area of high-efficiency gas storage,and decrease of the peak value variation of pore volume containing gas,and then reduces the storage capacity,working gas volume,and high-efficiency operation span of the gas storage.Numerical simulations exhibit large prediction errors of performance indexes if this hysteresis effect is not considered.Killough and Carlson methods can be used to correct the relative permeability hysteresis effect in water-invaded underground gas storage to improve the prediction accuracy.The Killough method has better adaptability to the example model.展开更多
This paper compares three methods for natural gas dehydration that are widely applied in industry:(1) absorption by triethylene glycol, (2) adsorption on solid desiccants and (3) condensation. A comparison is m...This paper compares three methods for natural gas dehydration that are widely applied in industry:(1) absorption by triethylene glycol, (2) adsorption on solid desiccants and (3) condensation. A comparison is made according to their energy demand and suitability for use. The energy calculations are performed on a model where 105 Nm3/h water saturated natural gas is processed at 30 °C. The pressure of the gas varies from 7 to 20 MPa. The required outlet concentration of water in natural gas is equivalent to the dew point temperature of -10 °C at gas pressure of 4 MPa.展开更多
Based on literature research in combination with the practice of CO_(2)flooding and storage in Jilin Oilfield,this study assesses the key problems in CO_(2)flooding and storage,proposing the corresponding countermeasu...Based on literature research in combination with the practice of CO_(2)flooding and storage in Jilin Oilfield,this study assesses the key problems in CO_(2)flooding and storage,proposing the corresponding countermeasures from five aspects of CO_(2)gas source condition,namely geological condition evaluation,scheme design incoordination with other production methods,economic and effectiveness evaluation,together with dynamic monitoring and safety evaluation.The results show that CO_(2)flooding is the most economic and effective CO_(2)storage method.In eastern China,inorganic origin CO_(2)gas reservoirs are widely developed and are especially the most enriched in the Paleozoic carbonate rock strata and the Cenozoic Paleogene–Neogene system,which provide a rich resource base for CO_(2)flooding and storage.In the future,CO_(2)generated in the industrial field will become the main gas source of CO_(2)flooding and storage.The evaluation of geological conditions of oil and gas reservoirs is the basis for the potential evaluation,planning scheme design and implementation of CO_(2)flooding and storage.CO_(2)storage should be below the depth of 800 m,the CO_(2)flooding and storage effects in lowpermeability oil reservoirs being the best.CO_(2)geological storage mechanisms primarily consist of tectonic geological storage,bound gas storage,dissolution storage,mineralization storage,hydrodynamic storage and coalbed adsorption storage.The practice of CO_(2)flooding and storage in Jilin Oilfield demonstratesthat the oil increment by CO_(2)flooding is at least 24%higher than by conventional water flooding.The most critical factor determining the success or failure of CO_(2)flooding and storage is economic effectiveness,which needs to be explored from two aspects:the method and technology innovation along with the carbon peaking and carbon neutrality policy support.After CO_(2)is injected into the reservoir,it will react with the reservoir and fluid,the problem of CO_(2)recovery or overflow will occur,so the dynamic monitoring and safety evaluation of CO_(2)flooding and storage are very important.This study is of great significance to the expansion of the application scope of CO_(2)flooding and storage and future scientific planning and deployment.展开更多
CO_(2)geological storage and utilization(CGSU)is considered a far-reaching technique to meet the demand of increasing energy supply and decreasing CO_(2)emissions.For CGSUs related to shale gas reservoirs,experimental...CO_(2)geological storage and utilization(CGSU)is considered a far-reaching technique to meet the demand of increasing energy supply and decreasing CO_(2)emissions.For CGSUs related to shale gas reservoirs,experimental investigations have attracted variable methodologies,among which low-field NMR(LF-NMR)is a promising method and is playing an increasingly key role in reservoir characterization.Herein,the application of this nondestructive,sensitive,and quick LF-NMR technique in characterizing CGSU behavior in shale gas reservoirs is reviewed.First,the basic principle of LF-NMR for 1H-fluid detection is introduced,which is the theoretical foundation of the reviewed achievements in this paper.Then,the reviewed works are related to the LF-NMR-based measurements of CH_(4)adsorption capacity and the CO_(2)-CH_(4)interaction in shale,as well as the performance on CO_(2)sequestration and simultaneous enhanced gas recovery from shale.Basically,the reviewed achievements have exhibited a large potential for LF-NMR application in CGSUs related to shale gas reservoirs,although some limitations and deficiencies still need to be improved.Accordingly,some suggestions are proposed for a more responsible development of the LF-NMR technique.Hopefully,this review is helpful in promoting the expanding application of the LF-NMR technique in CGSU implementation in shale gas reservoirs.展开更多
Although significant amount of H_(2)S(sour gas)rich natural gas is estimated globally,but not much attention has been given to the application of H_(2)S in the oil recovery process.Recent studies on the use of H_(2)S ...Although significant amount of H_(2)S(sour gas)rich natural gas is estimated globally,but not much attention has been given to the application of H_(2)S in the oil recovery process.Recent studies on the use of H_(2)S in oil recovery processes showed that H_(2)S has the potential of improving the oil recovery,and it can be even more effective than using CO_(2) in some processes.H_(2)S can equally dissolve in the water,react with the reservoir rock to change its surface charge,porosity,and permeability.However,previous in-vestigations on H_(2)S oil recovery attributed the improved oil recoveries to the higher miscibility of H_(2)S in the oil,and the reduction in the oil viscosity.Therefore,there is limited understanding on the H_(2)S-oil-brine-rock geochemical interactions,and how they impact the oil recovery process.This study aims to investigate the interactions between H_(2)S,oil,and carbonate formations,and to assess how the combi-nation of H_(2)S and low salinity water can impact the wettability and porosity of the reservoirs.A triple layer surface complexation model was used to understand the influence of key parameters(e.g.,pressure,brine salinity,and composition)on the H_(2)S-brine-oil-rock interactions.Moreover,the effects of mineral content of the carbonate rock on H_(2)S interactions were studied.Thereafter,the results of the H_(2)S-oil-brine-rock interactions were compared with a study where CO_(2) was used as the injected gas.Results of the study showed that the seawater and its diluted forms yielded identicalζ-potential values of about 3.31 mV at a pH of 3.24.This indicates that at very low pH condition,pH controls the ζ-potential of the oil-brine interface regardless of the brine's ionic strength.The study further demonstrated that the presence of other minerals in the carbonate rock greatly reduced the calcite dissolution.For instance,the calcite dissolution was reduced by 4.5%when anhydrite mineral was present in the carbonate rock.Findings from the simulation also indicated that CO_(2) produced negative ζ-potential values for the car-bonate rocks,and these values were reduced by 18.4%-20% when H_(2)S was used as the gas phase.This implies that the H_(2)S shifted the carbonate rockζ-potentials towards positive.The outcomes of this study can be applied when designing CO_(2) flooding and CO_(2) storage where the gas stream contains H_(2)S gas since H_(2)S greatly influences the dissolution of the carbonate mineral.展开更多
Depleted gas reservoirs are recognized as the most promising candidate for carbon dioxide storage.Primary gas production followed by injection of carbon dioxide after depletion is the strategy adopted for secondary ga...Depleted gas reservoirs are recognized as the most promising candidate for carbon dioxide storage.Primary gas production followed by injection of carbon dioxide after depletion is the strategy adopted for secondary gas recovery and storage practices.This strategy,however,depends on the injection strategy,reservoir characteristics and operational parameters.There have been many studies to-date discussing critical factors influencing the storage performance in depleted gas reservoirs while little attention was given to the effect of residual gas.In this paper,an attempt was made to highlight the importance of residual gas on the capacity,injectivity,reservoir pressurization,and trapping mechanisms of storage sites through the use of numerical simulation.The results obtained indicated that the storage performance is proportionally linked to the amount of residual gas in the medium and reservoirs with low residual fluids are a better choice for storage purposes.Therefore,it would be wise to perform the secondary recovery before storage in order to have the least amount of residual gas in the medium.Although the results of this study are useful to screen depleted gas reservoirs for the storage purpose,more studies are required to confirm the finding presented in this paper.展开更多
A new model called semi-permeable wall model is presented for multilayer gas reservoir. The model is used to study the influence of crossflow on pressure transient well tests and other single-phase flow problems. It i...A new model called semi-permeable wall model is presented for multilayer gas reservoir. The model is used to study the influence of crossflow on pressure transient well tests and other single-phase flow problems. It is suggested here to use this model to approximate the actual multilayer gas reservoir, so that the problem is greatly simplified mathematically. Its differential equation is established here for multilayer gas reservoirs, and is linearized by normalized pseudo pressure and pseudo time. Simulation program is developed by finite-difference method when all layers are perforated. The feature of wellbore pressure and rate is clarified by analyzing the results of numerical simulation.展开更多
基金Supported by the Chongqing Technical Innovation and Application&Development Special Project(cstc2020jscx-msxmX0189)。
文摘Permeability sensitivity to stress experiments were conducted on standard core samples taken from Wen 23 Gas Storage at multi-cycle injection and production conditions of the gas storage to study the change pattern of stress sensitivity of permeability.A method for calculating permeability under overburden pressure in the multi-cycle injection and production process was proposed,and the effect of stress sensitivity of reservoir permeability on gas well injectivity and productivity in UGS was analyzed.Retention rate of permeability decreased sharply first and then slowly with the increase of the UGS cycles.The stress sensitivity index of permeability decreased with the increase of cycle number of net stress variations in the increase process of net stress.The stress sensitivity index of permeability hardly changed with the increase of cycle number of net stress variations in the decrease process of net stress.With the increase of cycle number of net stress variation,the stress sensitivity index of permeability in the increase process of net stress approached that in the decrease process of net stress.The lower the reservoir permeability,the greater the irreversible permeability loss rate,the stronger the cyclic stress sensitivity,and the higher the stress sensitivity index of the reservoir,the stronger the reservoir stress sensitivity.The gas zones with permeability lower than 0.3’10-3 mm2 are not suitable as gas storage regions.Stress sensitivity of reservoir permeability has strong impact on gas well injectivity and productivity and mainly in the first few cycles.
基金the financial support from the Scientific Research and Technology Development Project of China Energy Engineering Corporation Limited(CEEC-KJZX-04).
文摘Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs.
基金supported by the China Postdoctoral Science Foundation(2022M722637)as well as the Natural Science Foundation of Sichuan Province(2022NSFSC0190).
文摘A simulation study was carried out to investigate the temporal evolution of H_(2)S in the Huangcaoxia underground gas storage (UGS), which is converted from a depleted sulfur-containing gas field. Based on the rock and fluid properties of the Huangcaoxia gas field, a multilayered model was built. The upper layer Jia-2 contains a high concentration of H_(2)S (27.2 g/m^(3)), and the lower layer Jia-1 contains a low concentration of H_(2)S (14.0 mg/m^(3)). There is also a low-permeability interlayer between Jia-1 and Jia-2. The multi-component fluid characterizations for Jia-1 and Jia-2 were implemented separately using the Peng-Robinson equation of state in order to perform the compositional simulation. The H_(2)S concentration gradually increased in a single cycle and peaked at the end of the production season. The peak H_(2)S concentration in each cycle showed a decreasing trend when the recovery factor (RF) of the gas field was lower than 70%. When the RF was above 70%, the peak H_(2)S concentration increased first and then decreased. A higher reservoir RF, a higher maximum working pressure, and a higher working gas ratio will lead to a higher H_(2)S removal efficiency. Similar to developing multi-layered petroleum fields, the operation of multilayered gas storage can also be divided into multi-layer commingled operation and independent operation for different layers. When the two layers are combined to build the storage, the sweet gas produced from Jia-1 can spontaneously mix with the sour gas produced from Jia-2 within the wellbore, which can significantly reduce the overall H_(2)S concentration in the wellstream. When the working gas volume is set constant, the allocation ratio between the two layers has little effect on the H_(2)S removal. After nine cycles, the produced gas’s H_(2)S concentration can be lowered to 20 mg/m^(3). Our study recommends combining the Jia-2 and Jia-1 layers to build the Huangcaoxia underground gas storage. This plan can quickly reduce the H_(2)S concentration of the produced gas to 20 mg/m^(3), thus meeting the gas export standards as well as the HSE (Health, Safety, and Environment) requirements in the field. This study helps the engineers understand the H_(2)S removal for sulfur-containing UGS as well as provides technical guidelines for converting other multilayered sour gas fields into underground storage sites.
基金Supported by the National Natural Science Foundation of China(51974268)the PetroChina Science and Technology Major Project(2015E-4002)China Postdoctoral Science Foundation(2019M663563)。
文摘Based on the differences in production mode and operation process between gas storage and gas reservoir,we established a phase balance test procedure and a theoretical simulation model of phase balance during multi-cycles of injection and production of underground gas storage(UGS)rebuilt from condensate gas reservoir to study the phase characteristics of produced and remaining fluids during multi-cycles of injection and production.Take condensate reservoir gas storage as example,the composition of produced fluid and remaining fluid,phase state of remaining fluid,retrograde condensate saturation and condensate recovery degree in the process of multi-cycles of injection-production were studied through multi-cycle injection-production experiment and phase equilibrium theory simulation.The injected gas could greatly improve the recovery of condensate oil in the gas reservoir,and the condensate oil recovery increased by 42% after 5 cycles of injection and production;the injected gas had significant evaporative and extraction effects on the condensate,especially during the first two cycles;the condensate oil saturation of the formation decreased with the increase of injection-production cycles,and the condensate oil saturation after multi-cycles of injection-production was almost 0;the storage capacity increased by about 7.5% after multi-cycles of injection and production,and the cumulative gas injection volume in the 5 th cycle increased by about 25%compared with that in the 1 st cycle.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51276048)
文摘One of the major technical challenges in using carbon dioxide( CO2) as part of the cushion gas of the underground gas storage reservoir( UGSR) is the mixture of CO2and natural gas. To decrease the mixing extent and manage the migration of the mixed zone,an understanding of the mechanism of CO2and natural gas mixing and the diffusion of the mixed gas in aquifer is necessary. In this paper,a numerical model based on the three dimensional gas-water two-phase flow theory and gas diffusion theory is developed to understand this mechanism. This model is validated by the actual operational data in Dazhangtuo UGSR in Tianjin City,China.Using the validated model,the mixed characteristic of CO2and natural gas and the migration mechanism of the mixed zone in an underground porous reservoir is further studied. Particularly,the impacts of the following factors on the migration mechanism are studied: the ratio of CO2injection,the reservoir porosity and the initial operating pressure. Based on the results,the optimal CO2injection ratio and an optimal control strategy to manage the migration of the mixed zone are obtained. These results provide technical guides for using CO2as cushion gas for UGSR in real projects.
基金Supported by the Petro China Science and Technology Major Project(2015E-4002)。
文摘By conducting relative permeability experiments of multi-cycle gas-water displacement and imbibition on natural cores,we discuss relative permeability hysteresis effect in underground gas storage during multi-cycle injection and production.A correction method for relative permeability hysteresis in numerical simulation of water-invaded gas storage has been worked out using the Carlson and Killough models.A geologic model of water-invaded sandstone gas storage with medium-low permeability is built to investigate the impacts of relative permeability hysteresis on fluid distribution and production performance during multi-cycle injection and production of the gas storage.The study shows that relative permeability hysteresis effect occurs during high-speed injection and production in gas storage converted from water-invaded gas reservoir,and leads to increase of gas-water transition zone width and thickness,shrinkage of the area of high-efficiency gas storage,and decrease of the peak value variation of pore volume containing gas,and then reduces the storage capacity,working gas volume,and high-efficiency operation span of the gas storage.Numerical simulations exhibit large prediction errors of performance indexes if this hysteresis effect is not considered.Killough and Carlson methods can be used to correct the relative permeability hysteresis effect in water-invaded underground gas storage to improve the prediction accuracy.The Killough method has better adaptability to the example model.
基金supported by the Inovation and Optimalization of Technologies for Natural Gas Dehydration(No.FR-TI1/173)
文摘This paper compares three methods for natural gas dehydration that are widely applied in industry:(1) absorption by triethylene glycol, (2) adsorption on solid desiccants and (3) condensation. A comparison is made according to their energy demand and suitability for use. The energy calculations are performed on a model where 105 Nm3/h water saturated natural gas is processed at 30 °C. The pressure of the gas varies from 7 to 20 MPa. The required outlet concentration of water in natural gas is equivalent to the dew point temperature of -10 °C at gas pressure of 4 MPa.
基金the financial support provided by the Magnitude Project of the Ministry of Science and Technology of China(Grant No.2011ZX05016-006)the Fine Reservoir Description Tracking Project in 2021 from the Petrochina Exploration and Development Company(Grant No.2021-40217-000046)。
文摘Based on literature research in combination with the practice of CO_(2)flooding and storage in Jilin Oilfield,this study assesses the key problems in CO_(2)flooding and storage,proposing the corresponding countermeasures from five aspects of CO_(2)gas source condition,namely geological condition evaluation,scheme design incoordination with other production methods,economic and effectiveness evaluation,together with dynamic monitoring and safety evaluation.The results show that CO_(2)flooding is the most economic and effective CO_(2)storage method.In eastern China,inorganic origin CO_(2)gas reservoirs are widely developed and are especially the most enriched in the Paleozoic carbonate rock strata and the Cenozoic Paleogene–Neogene system,which provide a rich resource base for CO_(2)flooding and storage.In the future,CO_(2)generated in the industrial field will become the main gas source of CO_(2)flooding and storage.The evaluation of geological conditions of oil and gas reservoirs is the basis for the potential evaluation,planning scheme design and implementation of CO_(2)flooding and storage.CO_(2)storage should be below the depth of 800 m,the CO_(2)flooding and storage effects in lowpermeability oil reservoirs being the best.CO_(2)geological storage mechanisms primarily consist of tectonic geological storage,bound gas storage,dissolution storage,mineralization storage,hydrodynamic storage and coalbed adsorption storage.The practice of CO_(2)flooding and storage in Jilin Oilfield demonstratesthat the oil increment by CO_(2)flooding is at least 24%higher than by conventional water flooding.The most critical factor determining the success or failure of CO_(2)flooding and storage is economic effectiveness,which needs to be explored from two aspects:the method and technology innovation along with the carbon peaking and carbon neutrality policy support.After CO_(2)is injected into the reservoir,it will react with the reservoir and fluid,the problem of CO_(2)recovery or overflow will occur,so the dynamic monitoring and safety evaluation of CO_(2)flooding and storage are very important.This study is of great significance to the expansion of the application scope of CO_(2)flooding and storage and future scientific planning and deployment.
基金the Science and Technology Department of Sichuan Province(Nos.2021YFH0048 and 2021YFH0118)the Fundamental Research Funds for the Central Universities(No.20826041E4199)+3 种基金the National Natural Science Foundation of China(Grant No.20740099)the Natural Science Foundation of Chongqing,China(No.CSTB2022NSCQ-BHX0721)the Chongqing Natural Science Foundation for Distinguished Young Scientists(No.cstc2021jcyj-jqX0007)the Key Laboratory of Shale Gas Exploration,Ministry of Natural Resources(No.KLSGE-202103).
文摘CO_(2)geological storage and utilization(CGSU)is considered a far-reaching technique to meet the demand of increasing energy supply and decreasing CO_(2)emissions.For CGSUs related to shale gas reservoirs,experimental investigations have attracted variable methodologies,among which low-field NMR(LF-NMR)is a promising method and is playing an increasingly key role in reservoir characterization.Herein,the application of this nondestructive,sensitive,and quick LF-NMR technique in characterizing CGSU behavior in shale gas reservoirs is reviewed.First,the basic principle of LF-NMR for 1H-fluid detection is introduced,which is the theoretical foundation of the reviewed achievements in this paper.Then,the reviewed works are related to the LF-NMR-based measurements of CH_(4)adsorption capacity and the CO_(2)-CH_(4)interaction in shale,as well as the performance on CO_(2)sequestration and simultaneous enhanced gas recovery from shale.Basically,the reviewed achievements have exhibited a large potential for LF-NMR application in CGSUs related to shale gas reservoirs,although some limitations and deficiencies still need to be improved.Accordingly,some suggestions are proposed for a more responsible development of the LF-NMR technique.Hopefully,this review is helpful in promoting the expanding application of the LF-NMR technique in CGSU implementation in shale gas reservoirs.
文摘Although significant amount of H_(2)S(sour gas)rich natural gas is estimated globally,but not much attention has been given to the application of H_(2)S in the oil recovery process.Recent studies on the use of H_(2)S in oil recovery processes showed that H_(2)S has the potential of improving the oil recovery,and it can be even more effective than using CO_(2) in some processes.H_(2)S can equally dissolve in the water,react with the reservoir rock to change its surface charge,porosity,and permeability.However,previous in-vestigations on H_(2)S oil recovery attributed the improved oil recoveries to the higher miscibility of H_(2)S in the oil,and the reduction in the oil viscosity.Therefore,there is limited understanding on the H_(2)S-oil-brine-rock geochemical interactions,and how they impact the oil recovery process.This study aims to investigate the interactions between H_(2)S,oil,and carbonate formations,and to assess how the combi-nation of H_(2)S and low salinity water can impact the wettability and porosity of the reservoirs.A triple layer surface complexation model was used to understand the influence of key parameters(e.g.,pressure,brine salinity,and composition)on the H_(2)S-brine-oil-rock interactions.Moreover,the effects of mineral content of the carbonate rock on H_(2)S interactions were studied.Thereafter,the results of the H_(2)S-oil-brine-rock interactions were compared with a study where CO_(2) was used as the injected gas.Results of the study showed that the seawater and its diluted forms yielded identicalζ-potential values of about 3.31 mV at a pH of 3.24.This indicates that at very low pH condition,pH controls the ζ-potential of the oil-brine interface regardless of the brine's ionic strength.The study further demonstrated that the presence of other minerals in the carbonate rock greatly reduced the calcite dissolution.For instance,the calcite dissolution was reduced by 4.5%when anhydrite mineral was present in the carbonate rock.Findings from the simulation also indicated that CO_(2) produced negative ζ-potential values for the car-bonate rocks,and these values were reduced by 18.4%-20% when H_(2)S was used as the gas phase.This implies that the H_(2)S shifted the carbonate rockζ-potentials towards positive.The outcomes of this study can be applied when designing CO_(2) flooding and CO_(2) storage where the gas stream contains H_(2)S gas since H_(2)S greatly influences the dissolution of the carbonate mineral.
基金The authors would like to acknowledge“Curtin University Sarawak Malaysia”to fund this research through the Curtin Sarawak Research Institute(CSRI)Flagship scheme under the grant number CSRI-6015The static modeling data of Juanes Research Group(JRG),Massachusetts Institute of Technology used for the purpose of this study is also acknowledged.Schlumberger Malaysia is also appreciated for providing us with the Eclipse Reservoir Simulation(E300)license。
文摘Depleted gas reservoirs are recognized as the most promising candidate for carbon dioxide storage.Primary gas production followed by injection of carbon dioxide after depletion is the strategy adopted for secondary gas recovery and storage practices.This strategy,however,depends on the injection strategy,reservoir characteristics and operational parameters.There have been many studies to-date discussing critical factors influencing the storage performance in depleted gas reservoirs while little attention was given to the effect of residual gas.In this paper,an attempt was made to highlight the importance of residual gas on the capacity,injectivity,reservoir pressurization,and trapping mechanisms of storage sites through the use of numerical simulation.The results obtained indicated that the storage performance is proportionally linked to the amount of residual gas in the medium and reservoirs with low residual fluids are a better choice for storage purposes.Therefore,it would be wise to perform the secondary recovery before storage in order to have the least amount of residual gas in the medium.Although the results of this study are useful to screen depleted gas reservoirs for the storage purpose,more studies are required to confirm the finding presented in this paper.
基金the National NatualScience Foundation of China (No.59995460).
文摘A new model called semi-permeable wall model is presented for multilayer gas reservoir. The model is used to study the influence of crossflow on pressure transient well tests and other single-phase flow problems. It is suggested here to use this model to approximate the actual multilayer gas reservoir, so that the problem is greatly simplified mathematically. Its differential equation is established here for multilayer gas reservoirs, and is linearized by normalized pseudo pressure and pseudo time. Simulation program is developed by finite-difference method when all layers are perforated. The feature of wellbore pressure and rate is clarified by analyzing the results of numerical simulation.