期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Gas treatment protection of metallic lithium anode 被引量:1
1
作者 李文俊 李泉 +5 位作者 黄杰 彭佳悦 褚赓 陆雅翔 郑杰允 李泓 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期8-13,共6页
The effects of different coating layers on lithium metal anode formed by reacting with different controlled atmospheres(argon,CO_2–O_2(2:1),N_2,and CO_2–O_2–N_2(2:1:3))have been investigated.The obtained X... The effects of different coating layers on lithium metal anode formed by reacting with different controlled atmospheres(argon,CO_2–O_2(2:1),N_2,and CO_2–O_2–N_2(2:1:3))have been investigated.The obtained XRD,second ion mass spectroscopy(SIMS),and scanning probe microscope(SPM)results demonstrate the formation of coating layers composed of Li_2CO_3,Li_3N,and the mixture of them on lithium tablets,respectively.The Li/Li symmetrical cell and Li/S cell are assembled to prove the advantages of the protected lithium tablet on electrochemical performance.The comparison of SEM and SIMS characterizations before/after cycles clarifies that an SEI-like composition formed on the lithium tablets could modulate the interfacial stabilization between the lithium foil and the ether electrolyte. 展开更多
关键词 gas treatment lithium metal anode lithium ion battery lithium protection
下载PDF
Fretting Wear Behavior of Medium Carbon Steel Modified by Low Temperature Gas Multi-component Thermo-chemical Treatment 被引量:3
2
作者 LUO Jun ZHENG Jianfeng PENG Jinfang HE Liping ZHU Minhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第3期288-296,共9页
The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, ... The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear resistance than the substrate in PSR and MFR; however, in SR, the wear resistance of the modified layer decreased with the increase of the displacement amplitudes. The experimental results can provide some experimental bases for promoting industrial application of LTGMTT modified layer in anti-fretting wear. 展开更多
关键词 fretting wear fretting regimes low temperature gas multi-component thermo-chemical treatment(LTGMTT) modified layer medium carbon steel
下载PDF
Key CO_(2)capture technology of pure oxygen exhaust gas combustion for syngas-fueled high-temperature fuel cells 被引量:4
3
作者 Hanlin Wang Qilong Lei +5 位作者 Pingping Li Changlei Liu Yunpeng Xue Xuewei Zhang Chufu Li Zhibin Yang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第3期383-393,共11页
Integrated gasification fuel cells(IGFCs)integrating high-temperature solid oxide fuel cell technology with CO_(2)capture processes represents highly-efficient power systems with negligible CO_(2)emissions.Flame burni... Integrated gasification fuel cells(IGFCs)integrating high-temperature solid oxide fuel cell technology with CO_(2)capture processes represents highly-efficient power systems with negligible CO_(2)emissions.Flame burning with pure oxygen is an ideal method for fuel cell exhaust gas treatment,and this report describes experimental and numerical studies regarding an oxy-combustor for treating the exhaust gas of a 10 kW IGFC system anode.The applied simulation method was verified based on experiments,and the key performance indices of the combustor were studied under various conditions.It was determined that 315 K was the ideal condensation temperature to obtain flame stability.Under these pure oxygen flame burning conditions,CO was almost completely converted,and the dry mole fraction of CO_(2)after burning was C 0.958 when there was up to 5%excess O_(2).Overall,5%excess O_(2)was recommended to maximize CO_(2)capture and promote other environmental considerations.Additionally,the optimal tangential fuel jet angle to control the liner temperature was approximately 25°.The total fuel utilization had to be high enough to maintain the oxygen flame temperature of the anode exhaust gas below 1800 K to ensure that the system was environmentally friendly.The results presented herein have great value for designing IGFCs coupled with CO_(2)capture systems. 展开更多
关键词 Integrated gasification fuel cell system Solid oxide fuel cell Anode exhaust gas treatment CO_(2)capture OXY-COMBUSTION
下载PDF
Performance of two biofilters with neutral and low pH treating off-gases 被引量:2
4
作者 LIU Jianwei LIU Junxin LI Lin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第12期1409-1414,共6页
Two different functional biofilters were carried out and compared for the treatment of off-gas containing multicomponent odors and volatile organic compounds (VOCs) in this study. The effects of pH values and the empt... Two different functional biofilters were carried out and compared for the treatment of off-gas containing multicomponent odors and volatile organic compounds (VOCs) in this study. The effects of pH values and the empty bed retention time (EBRT) on the performance of the bioreactors were studied; and the characteristics of microbial populations in the two biofilters were also determined. The experimental results indicated that the removal effciencies of hydrophilic compounds such as butyric acid and ammonia ... 展开更多
关键词 waste gas treatment BIOFILTRATION VOCs and odors bacteria FUNGI
下载PDF
Characteristics of greenhouse gas emission in three full-scale wastewater treatment processes 被引量:18
5
作者 Xu Yan Lin Li Junxin Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第2期256-263,共8页
Three full-scale wastewater treatment processes, Orbal oxidation ditch, anoxic/anaerobic/aerobic (reversed A^2O) and anaerobic/anoxic/aerobic (A^2O), were selected to investigate the emission characteristics of gr... Three full-scale wastewater treatment processes, Orbal oxidation ditch, anoxic/anaerobic/aerobic (reversed A^2O) and anaerobic/anoxic/aerobic (A^2O), were selected to investigate the emission characteristics of greenhouse gases (GHG), including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Results showed that although the processes were different, the units presenting high GHG emission fluxes were remarkably similar, namely the highest CO2 and N2O emission fluxes occurred in the aerobic areas, and the highest CH4 emission fluxes occurred in the grit tanks. The GHG emission amount of each unit can be calculated from its area and GHG emission flux. The calculation results revealed that the maximum emission amounts of CO2, CH4 and N2O in the three wastewater treatment processes appeared in the aerobic areas in all cases. Theoretically, CH4 should be produced in anaerobic conditions, rather than aerobic conditions. However, results in this study showed that the CH4 emission fluxes in the forepart of the aerobic area were distinctly higher than in the anaerobic area. The situation for N2O was similar to that of CH4: the N2O emission flux in the aerobic area was also higher than that in the anoxic area. Through analysis of the GHG mass balance, it was found that the flow of dissolved GHG in the wastewater treatment processes and aerators may be the main reason for this phenomenon. Based on the monitoring and calculation results, GHG emission factors for the three wastewater treatment processes were determined. The A^2O process had the highest CO2 emission factor of 319.3 g CO2/kg CODremoved, and the highest CH4 and N2O emission factors of 3.3 g CH4/kg CODremoved and 3.6 g N2O/kg TNremoved were observed in the Orbal oxidation ditch process. 展开更多
关键词 wastewater treatment greenhouse gas carbon dioxide methane nitrous oxide emission factor
原文传递
Room temperature NO2-sensing properties of hexagonal tungsten oxide nanorods 被引量:1
6
作者 武雅乔 胡明 田玉明 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第2期114-120,共7页
Hexagonal WO_3 nanorods were synthesized through a facile hydrothermal method. The nanorods properties were investigated by scanning electron microscope(SEM), transmission electron microscope(TEM), energy dispersi... Hexagonal WO_3 nanorods were synthesized through a facile hydrothermal method. The nanorods properties were investigated by scanning electron microscope(SEM), transmission electron microscope(TEM), energy dispersive spectroscopy(EDS), and x-ray diffraction(XRD). The NO_2-sensing performances in terms of sensor response, response/recovery times and repeatability at room temperature were optimized by varying the heat treatment temperature of WO_3 nanorods. The optimized NO_2sensor(400-℃-annealed WO_3 nanorods) showed an ultra-high sensor response of 3.2 and short response time of 1 s to 5-ppm NO_2. In addition, the 400-℃-annealed sample exhibited more stable repeatability.Furthermore, dynamic responses measurements of annealed samples showed that all the annealed WO_3 nanorods sensors presented p-type behaviors. We suppose the p-type behavior of the WO_3 nanorods sensor to be that an inversion layer is formed in the space charge layer when the sensor is exposed to NO_2 at room temperature.Therefore, the 400-℃-annealed WO_3 nanorods sensor is one of the most energy conservation candidates to detect NO_2 at room temperature. 展开更多
关键词 WO_3 nanorods thermal treatment NO_2 gas sensor room temperature
下载PDF
Construction and Optimization of Liquefied Natural Gas Regasification Cold Energy Comprehensive Utilization System on Floating Storage Regasification Unit
7
作者 YAO Shouguang WANG Mengdi +2 位作者 YAN Likun ZHANG Qiang YE Yong 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第6期1853-1867,共15页
In this paper, the efficient utilization of liquefied natural gas(LNG) vaporization cold energy in offshore liquefied natural gas floating storage regasification unit(FSRU) is studied. On the basis of considering diff... In this paper, the efficient utilization of liquefied natural gas(LNG) vaporization cold energy in offshore liquefied natural gas floating storage regasification unit(FSRU) is studied. On the basis of considering different boil-off gas(BOG) practical treatment processes, a cascade comprehensive utilization scheme of cold energy of LNG based on the longitudinal three-stage organic Rankine cycle power generation and the low-grade cold energy used to frozen seawater desalination was proposed. Through the comparative analysis of the effects of the pure working fluid and eight mixed working fluids on the performance of the new system, the combination scheme of system mixed working fluid with the highest exergy efficiency of the system was determined. Then, the genetic algorithm was used to optimize the parameters of the new system. After optimization, the net output power of the LNG cold energy comprehensive utilization system proposed in this paper was 5186 kW, and the exergy efficiency is 30.6%. Considering the power generation and freshwater revenue, the annual economic benefit of the system operating is 18.71 million CNY. 展开更多
关键词 LNG cold energy utilization mixed working fluid organic Rankine cycle boil-off gas(BOG)treatment
原文传递
Review on the NO removal from flue gas by oxidation methods 被引量:10
8
作者 Meng Si Boxiong Shen +6 位作者 George Adwek Lifu Xiong Lijun Liu Peng Yuan Hongpei Gao Cai Liang Qihai Guo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第3期49-71,共23页
Due to the increasingly strict emission standards of NOx on various industries,many traditional flue gas treatment methods have been gradually improved.Except for selective catalytic reduction(SCR)and selective non-ca... Due to the increasingly strict emission standards of NOx on various industries,many traditional flue gas treatment methods have been gradually improved.Except for selective catalytic reduction(SCR)and selective non-catalytic reduction(SNCR)methods to remove NOx from flue gas,theoxidation method is paying more attention to NOx removal now because of the potential to simultaneously remove multiple pollutants from flue gas.This paper summarizes the efficiency,reaction conditions,effect factors,and reaction mechanism of NO oxidation from the aspects of liquid-phase oxidation,gas-phase oxidation,plasma technology,and catalytic oxidation.The effects of free radicals and active components of catalysts on NO oxidation and the combination of various oxidation methods are discussed in detail.The advantages and disadvantages of different oxidation methods are summarized,and the suggestions for future research on NO oxidation are put forward at the end.The review on the NO removal by oxidation methods can provide new ideas for future studies on the NO removal from flue gas. 展开更多
关键词 Flue gas treatment NO oxidation Liquid-phase oxidation gas-phase oxidation Catalytic oxidation
原文传递
Removal of odors and VOCs in municipal solid waste comprehensive treatment plants using a novel three-stage integrated biofilter:Performance and bioaerosol emissions 被引量:5
9
作者 Jianwei Liu Peng Yue +2 位作者 Nana Zang Chen Lu Xinyue Chen 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2021年第3期177-189,共13页
A novel three-stage integrated biofilter(TSIBF)composed of acidophilic bacteria reaction segment(ABRS),fungal reaction segment(FRS)and heterotrophic bacteria reaction segment(HBRS)was constructed for the treatment of ... A novel three-stage integrated biofilter(TSIBF)composed of acidophilic bacteria reaction segment(ABRS),fungal reaction segment(FRS)and heterotrophic bacteria reaction segment(HBRS)was constructed for the treatment of odors and volatile organic compounds(VOCs)from municipal solid waste(MSW)comprehensive treatment plants.The performance,counts of predominant microorganisms,and bioaerosol emissions of a flill-scale TSIBF system were studied.High and stable removal efficiencies of hydrogen sulfide,ammonia and VOCs could be achieved with the TSIBF system,and the emissions of culturable heterotrophic bacteria,fungi and acidophilic sulfur bacteria were relatively low.The removal efficiencies of different odors and VOCs,emissions of culturable microorganisms,and types of predominant microorganisms were different in the ABRS,FRS and HBRS due to the differences in reaction conditions and mass transfer in each segment.The emissions of bioaerosols from the TSIBF depended on the capture of microorganisms and their volatilization from the packing.The rational segmentation,filling of high-density packings and the accumulation of the predominant functional microorganisms in each segment enhanced the capture effect of the bioaerosols,thus reducing the emissions of microorganisms from the bioreactor. 展开更多
关键词 BIOFILTRATION Multi-stage biofilter Volatile organic compounds Waste gas treatment Bioaerosol emissions
原文传递
Phytotoxicity and groundwater impacts of leaching from thermal treatment residues in roadways
10
作者 Khamphe Phoungthong Li-Ming Shao +1 位作者 Pin-Jing He Hua Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第1期58-67,共10页
The use of coal fly ash(CFA), municipal solid waste incinerator bottom ash(MSWIBA) and flue gas desulfurization residue(FGDR) in road construction has become very common owing to its economical advantages. Howev... The use of coal fly ash(CFA), municipal solid waste incinerator bottom ash(MSWIBA) and flue gas desulfurization residue(FGDR) in road construction has become very common owing to its economical advantages. However, these residues may contain toxic constituents that pose an environmental risk if they leach out and flow through the soil, surface water and groundwater.Therefore, it is necessary to assess the ecotoxicity and groundwater impact of these residues before decisions can be made regarding their utilization for road construction. In this study,the physico-chemical characteristics, leaching and phytotoxicity of these residues were investigated. Specifically, multivariate analyses were used to evaluate the contributions of the leaching constituents of the CFA, MSWIBA and FGDR leachates to the germination index of wheat seeds. B, Ba, Cr, Cu, Fe and Pb were found to be more toxic to the wheat seeds than the other heavy metals. Furthermore, the leached concentrations of the constituents from the CFA, MSWIBA and FGDR were below the regulatory threshold limits of the Chinese identification standard for hazardous wastes. Analyses conducted using a numerical groundwater model(Wisc LEACH) indicated that the predicted field concentrations of metals from the CFA, MSWIBA and FGDR increased with time up to about 30 years at the point of compliance, then decreased with time and distance. Overall, this study demonstrated that the risks resulting from MSWIBA, CFA and FGDR leaching could be assessed before its utilization for road construction, providing crucial information for the adoption of these alternative materials. 展开更多
关键词 Thermal treatment residues Bottom ash Flue gas desulfurization residue Heavy metals Phytotoxicity Groundwater impact
原文传递
Energy efficiencies and CO_(2)emissions associated with lowtemperature separation technologies for the processing of formation fluid from the Achimov deposits
11
作者 Alexandra Saitova Sergey Strokin +1 位作者 Falk Ahnert Aleksandr Chepurnov 《Petroleum Research》 EI 2023年第3期413-423,共11页
Three different technologies for the low-temperature separation(LTS)of gas condensate from the Achimov deposits in the Russian Urengoyskoe gas and condensate field were assessed using exergy analyses.The options exami... Three different technologies for the low-temperature separation(LTS)of gas condensate from the Achimov deposits in the Russian Urengoyskoe gas and condensate field were assessed using exergy analyses.The options examined included turbo-expansion and ejection.Thermomechanical exergy values were calculated for material streams and exergy losses and efficiencies were estimated for dedicated equipment used in the LTS.The lowest exergy loss of 4221.2 kW was obtained using turboexpansion and electricity cogeneration.The carbon release associated with each scenario was calculated while considering different production rates,technological parameters and natural decreases in wellhead pressure.The integral carbon footprint after 40 years of LTS operation was estimated for all cases.A classical ejector-based LTS scheme was shown to produce 1200 t of CO_(2)emissions over 40 years of operation.This same scheme combined with a turboexpander and electricity generator produced 59%less CO_(2)in the same period.An expansion-cogeneration LTS scheme was found to be the most effective and ecologically friendly among the various options based on this analysis. 展开更多
关键词 Oil and gas field gas condensate Carbon emission Carbon footprint Complex gas treatment unit
原文传递
New Development of Acid Regeneration in Steel Pickling Plants 被引量:15
12
作者 W F Kladnig 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2008年第4期1-6,共6页
For acid pickling heat treated mild steel and steel products, up to the middle of the last century, sulfuric acid was primarily in use, which has been replaced stepwise by hydrochloric acid since the sixties. During t... For acid pickling heat treated mild steel and steel products, up to the middle of the last century, sulfuric acid was primarily in use, which has been replaced stepwise by hydrochloric acid since the sixties. During this time, the pickling of high alloyed steel with hydrofluoric acid or mixtures for hydrofluoric acid together with nitric acid has also been applied on industrial scale. The technologies used by several plant contractors hereby show considerable differences in their engineering. The study provides a survey of the progress in the state of art of regeneration technology as well as the use of different pickl.ing media in the form of a review on existing technologies as well as improvements done within the recent years in the area. 展开更多
关键词 PICKLING mild steel high alloyed steel acid recycling technology global emission standard treatment of stack gas
原文传递
Near carbon‑zero cycle from VOCs capture to carbon fixation
13
作者 Zefang Yin Chaojie Cui +5 位作者 Xiang Yu Wanghua Zhao Dexi Lin Yu Zhang Kang Li Weizhong Qian 《Carbon Neutrality》 2022年第1期249-256,共8页
A new technical route of organic matter capture and carbon fixation is proposed in response of the increasingly strict emission standards of volatile organic compounds(VOCs)in petrochemical industry and the Chinese na... A new technical route of organic matter capture and carbon fixation is proposed in response of the increasingly strict emission standards of volatile organic compounds(VOCs)in petrochemical industry and the Chinese national strategic development goals of carbon peak and carbon neutralization.A closed loop from raw materials to adsorbents for gas treatment can be achieved by two key technical characteristics:(1)construct a new mesoporous adsorbent with complete desorption and regeneration function by carbon nanotubes(CNTs);(2)convert gaseous organic matter which cannot be recycled in liquid/gas state to CNTs.It realizes the resource integration of"turning waste into treasure"and maximizes the carbon emission reduction effect of waste gas treatment process without consuming extra precious fossil fuel,compared with the traditional technologies of VOCs treatments,including combustion or catalytic oxidation.What’s more,the increase in supply of various green electricity is expected to change the current situation of large investment and heavy cost burden of environmental protection technology,and make a great contribution to the national carbon peak and carbon neutrality policy. 展开更多
关键词 Carbon nanotubes Volatile organic compounds Waste gas treatment Carbon emissions Closed loop
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部