期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Thermodynamic Performance Analysis of E/F/H-Class Gas Turbine Combined Cycle with Exhaust Gas Recirculation and Inlet/Variable Guide Vane Adjustment under Part-Load Conditions
1
作者 LI Keying CHI Jinling +1 位作者 WANG Bo ZHANG Shijie 《Journal of Thermal Science》 SCIE EI CSCD 2024年第1期348-367,共20页
Exhaust gas recirculation control(EGRC),an inlet air heating technology,can be utilized in combination with inlet/variable guide vane control(IGV/VGVC) and fuel flow control(FFC) to regulate the load,thereby effective... Exhaust gas recirculation control(EGRC),an inlet air heating technology,can be utilized in combination with inlet/variable guide vane control(IGV/VGVC) and fuel flow control(FFC) to regulate the load,thereby effectively improving the part-load(i.e.,off-design) performance of the gas turbine combined cycle(GTCC).In this study,the E-,F-,and H-Class EGR-GTCC design and off-design system models were established and validated to perform a comparative analysis of the part-load performance under the EGR-IGV-FFC and conventional IGV-FFC strategies in the E/F/H-Class GTCC.Results show that EGR-IGV-FFC has considerable potential for the part-load performance enhancement and can show a higher combined cycle efficiency than IGV-FFC in the E-,F-,and H-Class GTCCs.However,the part-load performance improvement in the corresponding GTCC was weakened for the higher class of the gas turbine because of the narrower load range of EGR action and the deterioration of the gas turbine performance.Furthermore,EGR-IGV-FFC was inferior to IGV-FFC in improving the performance at loads below 50% for the H-Class GTCC.The results obtained in this paper could help guide the application of EGR-IGV-FFC to enhance the part-load performance of various classes of GTCC systems. 展开更多
关键词 E/F/H-Class gas turbine combined cycle performance improvement part-load conditions exhaust gas recirculation inlet/variable guide vane
原文传递
Performance Assessment of a Novel Polygeneration System Based on the Integration of Waste Plasma Gasification,Tire Pyrolysis,Gas Turbine,Supercritical CO_(2)Cycle and Organic Rankine Cycle 被引量:1
2
作者 FENG Fuyuan LI Tongyu +5 位作者 AN Jizhen CHEN Heng WANG Yi’nan XU Gang ZHAO Qinxin LIU Tong 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第6期2196-2214,共19页
In this paper,a novel polygeneration system involving plasma gasifier,pyrolysis reactor,gas turbine(GT),supercritical CO_(2)(S-CO_(2))cycle,and organic Rankine cycle(ORC)has been developed.In the proposed scheme,the s... In this paper,a novel polygeneration system involving plasma gasifier,pyrolysis reactor,gas turbine(GT),supercritical CO_(2)(S-CO_(2))cycle,and organic Rankine cycle(ORC)has been developed.In the proposed scheme,the syngas is obtained by the gasification and the pyrolysis is first burned and drives the gas turbine for power generation,and then the resulting hot exhaust gas is applied to heat the working fluid for the supercritical CO_(2)cycle and the working fluid for the bottom organic Rankine cycle.In addition to the electrical output,the pyrolysis subsystem also produces pyrolysis oil and char.Accordingly,energy recovery is achieved while treating waste in a non-hazardous manner.The performance of the new scheme was examined by numerous methods,containing energy analysis,exergy analysis,and economic analysis.It is found that the net total energy output of the polygeneration system could attain 19.89 MW with a net total energy efficiency of 52.77%,and the total exergy efficiency of 50.14%.Besides,the dynamic payback period for the restoration of the proposed project is only 3.31 years,and the relative net present value of 77552640 USD can be achieved during its 20-year lifetime. 展开更多
关键词 polygeneration system waste plasma gasification tire pyrolysis gas turbine cycle supercritical CO_(2)cycle organic Rankine cycle
原文传递
Economics and Performance Forecast of Gas Turbine Combined Cycle 被引量:2
3
作者 张小桃 椙下秀昭 +1 位作者 倪维斗 李政 《Tsinghua Science and Technology》 SCIE EI CAS 2005年第5期633-636,共4页
Forecasts of the various types of gas turbines economics and performance of gas turbine combined cycle (GTCC) with will help power plant designers to select the best type of gas turbine for future Chinese powerplant... Forecasts of the various types of gas turbines economics and performance of gas turbine combined cycle (GTCC) with will help power plant designers to select the best type of gas turbine for future Chinese powerplants. The cost and performance of various designs were estimated using the commercial software GT PRO. Improved GTCC output will increase the system efficiency which may induce total investment and will certainly increase the cumulative cash which then will induce the cost and the payback period. The relative annual fuel output increases almost in proportion to the relative GTCC output. China should select the gas turbine that provides the most economical output according to its specific conditions. The analysis shows that a GTCC power plant with a medium-sized 100 to 200 MW output gas turbine is the most suitable for Chinese investors. 展开更多
关键词 cumulative cash flow relative owner's cost relative years for payback relative annual fueloutput gas turbine combined cycle (GTCC) gas turbine
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部