Exhaust gas recirculation control(EGRC),an inlet air heating technology,can be utilized in combination with inlet/variable guide vane control(IGV/VGVC) and fuel flow control(FFC) to regulate the load,thereby effective...Exhaust gas recirculation control(EGRC),an inlet air heating technology,can be utilized in combination with inlet/variable guide vane control(IGV/VGVC) and fuel flow control(FFC) to regulate the load,thereby effectively improving the part-load(i.e.,off-design) performance of the gas turbine combined cycle(GTCC).In this study,the E-,F-,and H-Class EGR-GTCC design and off-design system models were established and validated to perform a comparative analysis of the part-load performance under the EGR-IGV-FFC and conventional IGV-FFC strategies in the E/F/H-Class GTCC.Results show that EGR-IGV-FFC has considerable potential for the part-load performance enhancement and can show a higher combined cycle efficiency than IGV-FFC in the E-,F-,and H-Class GTCCs.However,the part-load performance improvement in the corresponding GTCC was weakened for the higher class of the gas turbine because of the narrower load range of EGR action and the deterioration of the gas turbine performance.Furthermore,EGR-IGV-FFC was inferior to IGV-FFC in improving the performance at loads below 50% for the H-Class GTCC.The results obtained in this paper could help guide the application of EGR-IGV-FFC to enhance the part-load performance of various classes of GTCC systems.展开更多
Model-based control shows promising potential for engine performance improve-ment and future aero-propulsion requirements.In this paper,an auto-updating thrust variation mitigation(AuTVM)control approach using on-boar...Model-based control shows promising potential for engine performance improve-ment and future aero-propulsion requirements.In this paper,an auto-updating thrust variation mitigation(AuTVM)control approach using on-board model strategies is proposed for gas tur-bine aero-engines under in-service degradation effects,which aims at active thrust regulation and acceleration protection in a simultaneous way.The AuTVM control is integrated with an on-line block,based on a reliable on-board engine model,and an off-line part for the periodical update of control parameters via post-flight engine monitoring data.The core feature of the AuTVM control is a set of auto-updating loops within the on-line part,including thrust regu-lation loop,surge margin loop,turbine entry temperature loop,and the steady loop,whose con-trol parameters are periodically adjusted with increasingflight cycles.Meanwhile,an industrial sensor-based baseline controller and two tailored model-based controllers,i.e.,a thrust variation mitigation(TVM)controller withfixed gains and a self-enhancing active transient protection(SeATP)controller with pro-active transient protection and passive thrust control,are also developed as comparison bases.Numerical simulations for idle to full-power acceleration tests are carried on a validated aero-thermal turbofan engine model using publicly available degra-dation data.Simulation results demonstrate that both new engines and severely degraded en-gines regulated by the AuTVM controller show significant thrust response enhancement,compared to the baseline controller.Moreover,thrust variation at the maximum steady state of degraded engines,which exists within the SeATP controller and the baseline controller,is suppressed by the proposed AuTVM controller.Robustness analysis against degradation uncer-tainties and sensor accuracy confirms that the AuTVM controller owns a closer maximum steady-state thrust distribution to the desired value than those of the SeATP and the baseline controller while utilizing transient margins of controlled engines more effectively.Hence,the control performance of the AuTVM controller for in-service engines is guaranteed.展开更多
The modern gas turbine engine has been used in current power generation industry for almost half a century. Gas turbines are designed to operate with the best efficiency during normal operating conditions and at speci...The modern gas turbine engine has been used in current power generation industry for almost half a century. Gas turbines are designed to operate with the best efficiency during normal operating conditions and at specific operating points. However, the real world is non-optimal and the engine may have to operate at off-design conditions due to load requirements, different ambient temperatures, fuel types, relative humidity and driven equipment speed.Also more and more base-load gas turbines have to work today on partial load too, which can affect the hot gas path condition and life expectancy. At these off-design conditions, gas turbine's efficiency and life deterioration rate might significantly deviate from the design specifications. During a gas turbine's life, power generation providers might need to perform several overhauls or upgrades for their engines. Thus, the off-design performance after the overhaul also might be changed. Prediction of gas turbine's off-design performance is essential to economical operation of power generation equipment. In this paper, an integrated system for complex design and off-design performance prediction(Ax STREAM? Platform) is presented. It allows to predict gas turbine engine's design and off-design performance almost automatically. Each component's performance such as turbine, compressor, combustor and entire secondary flow(cooling) system is directly and simultaneously calculated for every off-design performance request, making possible to build an off-design performance map including cooling system. The example of off-design performance estimation of industrial gas turbine engine is presented. The presented approach provides wide capabilities for optimization of operation modes of industrial gas turbine engines and other complex turbomachinery systems for every specific operation conditions(environment, grid demands and other factors).展开更多
基金financial support from the Fundamental Research Project in the Chinese National Sciences and Technology Major Project (Grant No.2017-1-0002-0002)。
文摘Exhaust gas recirculation control(EGRC),an inlet air heating technology,can be utilized in combination with inlet/variable guide vane control(IGV/VGVC) and fuel flow control(FFC) to regulate the load,thereby effectively improving the part-load(i.e.,off-design) performance of the gas turbine combined cycle(GTCC).In this study,the E-,F-,and H-Class EGR-GTCC design and off-design system models were established and validated to perform a comparative analysis of the part-load performance under the EGR-IGV-FFC and conventional IGV-FFC strategies in the E/F/H-Class GTCC.Results show that EGR-IGV-FFC has considerable potential for the part-load performance enhancement and can show a higher combined cycle efficiency than IGV-FFC in the E-,F-,and H-Class GTCCs.However,the part-load performance improvement in the corresponding GTCC was weakened for the higher class of the gas turbine because of the narrower load range of EGR action and the deterioration of the gas turbine performance.Furthermore,EGR-IGV-FFC was inferior to IGV-FFC in improving the performance at loads below 50% for the H-Class GTCC.The results obtained in this paper could help guide the application of EGR-IGV-FFC to enhance the part-load performance of various classes of GTCC systems.
基金supported by China National Postdoctoral Program for Innovative Talents (Grant No.:BX20220373)the Fundamental Research Funds for the Central Universities (Grant No.:YWF-23-Q-1067)Young Elite Scientists Sponsorship Program by BAST (Grant No.:BYESS2023081).
文摘Model-based control shows promising potential for engine performance improve-ment and future aero-propulsion requirements.In this paper,an auto-updating thrust variation mitigation(AuTVM)control approach using on-board model strategies is proposed for gas tur-bine aero-engines under in-service degradation effects,which aims at active thrust regulation and acceleration protection in a simultaneous way.The AuTVM control is integrated with an on-line block,based on a reliable on-board engine model,and an off-line part for the periodical update of control parameters via post-flight engine monitoring data.The core feature of the AuTVM control is a set of auto-updating loops within the on-line part,including thrust regu-lation loop,surge margin loop,turbine entry temperature loop,and the steady loop,whose con-trol parameters are periodically adjusted with increasingflight cycles.Meanwhile,an industrial sensor-based baseline controller and two tailored model-based controllers,i.e.,a thrust variation mitigation(TVM)controller withfixed gains and a self-enhancing active transient protection(SeATP)controller with pro-active transient protection and passive thrust control,are also developed as comparison bases.Numerical simulations for idle to full-power acceleration tests are carried on a validated aero-thermal turbofan engine model using publicly available degra-dation data.Simulation results demonstrate that both new engines and severely degraded en-gines regulated by the AuTVM controller show significant thrust response enhancement,compared to the baseline controller.Moreover,thrust variation at the maximum steady state of degraded engines,which exists within the SeATP controller and the baseline controller,is suppressed by the proposed AuTVM controller.Robustness analysis against degradation uncer-tainties and sensor accuracy confirms that the AuTVM controller owns a closer maximum steady-state thrust distribution to the desired value than those of the SeATP and the baseline controller while utilizing transient margins of controlled engines more effectively.Hence,the control performance of the AuTVM controller for in-service engines is guaranteed.
文摘The modern gas turbine engine has been used in current power generation industry for almost half a century. Gas turbines are designed to operate with the best efficiency during normal operating conditions and at specific operating points. However, the real world is non-optimal and the engine may have to operate at off-design conditions due to load requirements, different ambient temperatures, fuel types, relative humidity and driven equipment speed.Also more and more base-load gas turbines have to work today on partial load too, which can affect the hot gas path condition and life expectancy. At these off-design conditions, gas turbine's efficiency and life deterioration rate might significantly deviate from the design specifications. During a gas turbine's life, power generation providers might need to perform several overhauls or upgrades for their engines. Thus, the off-design performance after the overhaul also might be changed. Prediction of gas turbine's off-design performance is essential to economical operation of power generation equipment. In this paper, an integrated system for complex design and off-design performance prediction(Ax STREAM? Platform) is presented. It allows to predict gas turbine engine's design and off-design performance almost automatically. Each component's performance such as turbine, compressor, combustor and entire secondary flow(cooling) system is directly and simultaneously calculated for every off-design performance request, making possible to build an off-design performance map including cooling system. The example of off-design performance estimation of industrial gas turbine engine is presented. The presented approach provides wide capabilities for optimization of operation modes of industrial gas turbine engines and other complex turbomachinery systems for every specific operation conditions(environment, grid demands and other factors).