期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Gas-kinetic numerical method for solving mesoscopic velocity distribution function equation 被引量:9
1
作者 Zhihui Li Hanxin Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第2期121-132,共12页
A gas-kinetic numerical method for directly solving the mesoscopic velocity distribution function equation is presented and applied to the study of three-dimensional complex flows and micro-channel flows covering vari... A gas-kinetic numerical method for directly solving the mesoscopic velocity distribution function equation is presented and applied to the study of three-dimensional complex flows and micro-channel flows covering various flow regimes. The unified velocity distribution function equation describing gas transport phenomena from rarefied transition to continuum flow regimes can be presented on the basis of the kinetic Boltzmann-Shakhov model equation. The gas-kinetic finite-difference schemes for the velocity distribution function are constructed by developing a discrete velocity ordinate method of gas kinetic theory and an unsteady time-splitting technique from computational fluid dynamics. Gas-kinetic boundary conditions and numerical modeling can be established by directly manipulating on the mesoscopic velocity distribution function. A new Gauss-type discrete velocity numerical integra- tion method can be developed and adopted to attack complex flows with different Mach numbers. HPF paral- lel strategy suitable for the gas-kinetic numerical method is investigated and adopted to solve three-dimensional complex problems. High Mach number flows around three-dimensional bodies are computed preliminarilywith massive scale parallel. It is noteworthy and of practical importance that the HPF parallel algorithm for solving three-dimensional complex problems can be effectively developed to cover various flow regimes. On the other hand, the gas-kinetic numerical method is extended and used to study micro-channel gas flows including the classical Couette flow, the Poiseuillechannel flow and pressure-driven gas flows in twodimensional short micro-channels. The numerical experience shows that the gas-kinetic algorithm may be a powerful tool in the numerical simulation of microscale gas flows occuring in the Micro-Electro-Mechanical System (MEMS). 展开更多
关键词 gas kinetic theory . velocity distributionfunction . Boltzmann model equation .Spacecraft flows . Micro-scale gas flows
下载PDF
Delivery of inert gas through a vertical borehole using inert gas generator: A theoretical study
2
作者 Rickard Hansen 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第4期501-510,共10页
The delivery of the inert gas through a vertical borehole using inert gas generator or IGG is investigated.Potential limitations and/or transient effects are highlighted.During the analysis,the borehole diameter,boreh... The delivery of the inert gas through a vertical borehole using inert gas generator or IGG is investigated.Potential limitations and/or transient effects are highlighted.During the analysis,the borehole diameter,borehole length,type of borehole and partial condensation prior to entering the borehole were varied.A choked flow will occur for a contraction exit or borehole of 0.3 m in diameter if no condensation prior to the contraction occurs.If partial condensation takes place,a borehole diameter of 0.3 m will be possible if almost 50%of the water vapour condensates.However,pressure losses along boreholes with a diameter of 0.3 or 0.4 m are significant and could pose a challenge if trying to mitigate the pressure losses.Adding a booster fan prior to the inlet of the 0.4 m lined borehole would still be a challenge.The corresponding case with a 0.5 m borehole presents much more favourable pressure losses.The 0.5 m diameter lined borehole should be regarded as the lower threshold.The rapid heating of the unlined borehole surface will increase the risk of thermal spallation and possibly imposing restrictions.Understanding the mechanisms during gas delivery will increase the likelihood of a successful inertisation. 展开更多
关键词 GAG Inert gas CONDENSATION Pressure loss Choked flow gas velocity BOREHOLE Heat transfer
下载PDF
Effect of an electrostatic field on gas adsorption and diffusion in tectonic coal 被引量:4
3
作者 Jian Kuo Lei Dongji +2 位作者 Fu Xuehai Zhang Yugui Li Hengle 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第4期607-613,共7页
The characteristics of adsorption, desorption, and diffusion of gas in tectonic coal are important for the prediction of coal and gas outbursts. Three types of coal samples, of which both metamorphic grade and degree ... The characteristics of adsorption, desorption, and diffusion of gas in tectonic coal are important for the prediction of coal and gas outbursts. Three types of coal samples, of which both metamorphic grade and degree of damage is different, were selected from Tongchun, Qilin, and Pingdingshan mines. Using a series of experiments in an electrostatic field, we analyzed the characteristics of gas adsorption and diffusion in tectonic coal. We found that gas adsorption in coal conforms to the Langmuir equation in an electrostatic field. Both the depth of the adsorption potential well and the coal molecular electroneg- ativity increases under the action of an electrostatic field. A Joule heating effect was caused by changing the coal-gas system conductivity in an electrostatic field. The quantity of gas adsorbed and AP result from competition between the depth of the adsorption potential well, the coal molecular electronegativ- ity, and the Joule heating effect. △P peaks when the three factors control behavior equally. Compared with anthracite, the impact of the electrostatic field on the gas diffusion capacity of middle and high rank coals is greater. Compared with the original coal, the gas adsorption quantity,△P, and the gas diffusion capacity of tectonic coal are greater in an electrostatic field. In addition, the smaller the particle size of tectonic coal, the larger the△P. 展开更多
关键词 Electrostatic field Tectonic coal Depth of adsorption potential well Joule heating effect Initial velocity of gas diffusion
下载PDF
Study on the propagation law of shock wave resulting from coal and gas outburst 被引量:2
4
作者 WANG Kai ZHOU Ai-tao +2 位作者 ZHANG Pin LI Chuan GUO Yan-wei 《Journal of Coal Science & Engineering(China)》 2011年第2期142-146,共5页
According to the formation of shock wave resulting from coal and gas outburst, the gas flow of coal and gas outburst was transformed from an unsteady flow to a steady one based on selected appropriate reference coordi... According to the formation of shock wave resulting from coal and gas outburst, the gas flow of coal and gas outburst was transformed from an unsteady flow to a steady one based on selected appropriate reference coordinates, and the mathematical expressions were then established by applying mass conservation, momentum conservation equation, and energy conservation equation. On this basis, analyzed gas flow mitigation of variable cross-section area and the outburst intensity, and the relations between cross-section area, velocity, and density; the relations between overpressures and outburst intensity were deduced. Furthermore, shock waves resulting from coal and gas outburst and outburst intensity were measured by experimental setup, the overpressure and outburst intensity of different gas pressures were obtained, and the similar conditions of the experiment were numerically simulated. The averaged overpressure and gas flow velocity of variable cross-section under different gas pressures were numerically derived. The results show that the averaged overpressure and outburst intensity obtained from simulation are in good agreement with the experimental results. Moreover, the gas flow velocity of variable cross-sections approximates to the theoretical analysis. 展开更多
关键词 coal and gas outburst shock wave OVERPRESSURE gas flow velocity outburst intensity
下载PDF
Global air-sea surface carbon-dioxide transfer velocity and flux estimated using ERS-2 data and a new parametric formula 被引量:1
5
作者 YU Tan HE Yijun +3 位作者 ZHA Guozhen SONG Jinba LIU Guoqiang GUO Jie 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2013年第7期78-87,共10页
Using data from the European remote sensing scatterometer (ERS-2) from July 1997 to August 1998, glob- al distributions of the air-sea CO2 transfer velocity and flux are retrieved. A new model of the air-sea CO2 tra... Using data from the European remote sensing scatterometer (ERS-2) from July 1997 to August 1998, glob- al distributions of the air-sea CO2 transfer velocity and flux are retrieved. A new model of the air-sea CO2 transfer velocity with surface wind speed and wave steepness is proposed. The wave steepness (6) is re- trieved using a neural network (NN) model from ERS-2 scatterometer data, while the wind speed is directly derived by the ERS-2 scatterometer. The new model agrees well with the formulations based on the wind speed and the variation in the wind speed dependent relationships presented in many previous studies can be explained by this proposed relation with variation in wave steepness effect. Seasonally global maps of gas transfer velocity and flux are shown on the basis of the new model and the seasonal variations of the transfer velocity and flux during the 1 a period. The global mean gas transfer velocity is 30 cm/h after area-weighting and Schmidt number correction and its accuracy remains calculation with in situ data. The highest transfer velocity occurs around 60°N and 60°S, while the lowest on the equator. The total air to sea CO2 flux (calcu- lated by carbon) in that year is 1.77 Pg. The strongest source of CO2 is in the equatorial east Pacific Ocean, while the strongest sink is in the 68°N. Full exploration of the uncertainty of this estimate awaits further data. An effectual method is provided to calculate the effect of waves on the determination of air-sea CO2 transfer velociW and fluxes with ERS-2 scatterometer data. 展开更多
关键词 gas transfer velocity carbon dioxide flux wave steepness European remote sensing scatterom-eter
下载PDF
Fluidization characteristics of magnetic particles and determination of stable fluidization zone in magnetically fluidized bed 被引量:1
6
作者 王迎慧 归柯庭 施明恒 《Journal of Southeast University(English Edition)》 EI CAS 2006年第4期523-527,共5页
To determine and calculate the stable fluidization zone in a magnetically fluidized bed, the fluidization characteristics of magnetic particles are investigated. Four kinds of magnetic particles with different average... To determine and calculate the stable fluidization zone in a magnetically fluidized bed, the fluidization characteristics of magnetic particles are investigated. Four kinds of magnetic particles with different average diameters, ranging from 231 to 512 μm, are fluidized in the presence of magnetic fields with specified values of the intensity in the range of zero to 7330 A/m, and the particle fluidization curves are plotted. For marking the stable fluidization zone in the curves, the minimum bubbling velocities of particles are measured by the pressure-drop fluctuation. Based on the fluidization curves, the influences of the average particle diameter and magnetic field intensity on the zone are analyzed and discussed. A correlation to determine the stable fluidization zone is derived from the experimental data, using three dimensionless numbers, i. e., the ratio of magnetic potential to gravity potential, the Reynolds number and the Archimedes number. Compared with available data reported, it is shown that the correlation is more simplified to predict relative parameters for the bed operating in the state of stable fluidization under reasonable conditions. 展开更多
关键词 magnetically fluidized bed fluidization characteristics stable fluidization minimum bubbling gas velocity pressure-drop fluctuation
下载PDF
Effect of bubbles addition on teetered bed separation 被引量:2
7
作者 Ni Chao Xie Guangyuan +3 位作者 Liu Bo Bu Xiangning Peng Yaoli Sha Jie 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第5期835-841,共7页
To improve the separation efficiency of a conventional Teetered Bed Separator(TBS) in beneficiation of fine coal with a wide size range,an Aeration TBS(A-TBS) was proposed in this investigation.The bubbles were introd... To improve the separation efficiency of a conventional Teetered Bed Separator(TBS) in beneficiation of fine coal with a wide size range,an Aeration TBS(A-TBS) was proposed in this investigation.The bubbles were introduced to A-TBS by a self-priming micro-bubble generator.This study theoretically analyzed the effect of bubbles on the difference in hindered settling terminal velocity between different density particles,investigated the impact of superficial water velocity(V_(SW)) and superficial gas velocity(V_(Sg)) on bed fluidization,and compared the performance of the TBS and A-TBS in treating 1-0.25 mm size fraction particles.The results show that the expansion degree of fluidized bed which was formed by different size particles or has different initial height,is increased by the introduction of bubbles.Compared with the TBS,at the same level of clean coal ash content,the A-TBS shows an increase in the combustible recovery of clean coal,ash content of tailings,and practical separation density by 5.26%,6.56%,and 0.088 g/cm3 respectively,while it shows a decrease in the probable error(E_p) and V_(SW) by 0.031 and 3.51 mm/s,respectively.The addition of bubbles at a proper amount not only improves the separation performance of TBS,but also reduces the upward water velocity. 展开更多
关键词 Teetered bed separator Fine coal BUBBLES Superficial water velocity Superficial gas velocity
下载PDF
Experimental Study and Analysis on Performance and Dedusting Efficiency of Frothing Generator 被引量:2
8
作者 ZhonganJiang CuifengDu 《Journal of University of Science and Technology Beijing》 CSCD 2002年第1期5-8,共4页
By simulating test and study in laboratory, the structure and performance offrothing generator were determined. The relative curves between the frothing volume and gas velocityof foaming net, supplying liquid volume a... By simulating test and study in laboratory, the structure and performance offrothing generator were determined. The relative curves between the frothing volume and gas velocityof foaming net, supplying liquid volume and the content of foaming agent were obtainedrespectively. There were an optimum gas-velocity of foaming net, an optimum supplying liquid volumeand an optimum content of foaming agent under the condition of the given material quality and shapeof foaming net and spraying form. The spraying froth is of a great assistance in collectingrespirable dust. 展开更多
关键词 frothing generator dedusting efficiency gas velocity frothing volume liquid volume.
下载PDF
Spray Characteristics Study of Combined Trapezoid Spray Tray
9
作者 He Liang Li Chunli +1 位作者 Liu Jidong Xie Zhenshan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第3期104-110,共7页
The spray behaviors of the combined trapezoid spray tray(CTST) have a significant effect on the gas-liquid interface. In this paper, the spray process of CTST in a column, 570 mm in diameter, was experimentally invest... The spray behaviors of the combined trapezoid spray tray(CTST) have a significant effect on the gas-liquid interface. In this paper, the spray process of CTST in a column, 570 mm in diameter, was experimentally investigated by using a high-speed camera, and a theoretical model of the average droplet size was established according to the unstable wave theory. The results demonstrated that gas velocity passing through the hole is the key factor affecting the spray angle, which increases gradually with an increase in the gas velocity. When the gas velocity exceeds 7.5 m/s, the spray angle becomes stable at around 55°. The average flow velocity of the liquid sheet at the spray-hole increases significantly with an increase in the gas velocity, and decreases slightly with an increase in the liquid flow rate; moreover, it increases from the bottom of spray hole upward to the top. The density of liquid drops distribution in the spray area can be described by the RosinRammler function. In addition, the liquid drops are mainly concentrated in the area of spray angle ranging from 20° to 40°, and they gradually become uniform with the increase in the gas velocity and the liquid flow rate. The average liquid drop size deceases with an increase in the gas velocity, and increases slightly with an increasing liquid flow rate. In the normal working range, the average liquid drop size is about 1.0 mm to 2.5 mm in diameter. 展开更多
关键词 CTST spray angle gas velocity distribution density average flow velocity of liquid sheet droplet size
下载PDF
The Influence of Feeding Method on Fluidization Behavior of Fixed Fluidized Bed
10
作者 Ren Shihong Mao Anguo Wei Xiaoli 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第1期13-18,共6页
An experimental installation of cold model simulation was set up to study the bed pressure drop in different regions of fixed fluidized bed reactor during top feeding and bottom feeding, respectively, at various gas v... An experimental installation of cold model simulation was set up to study the bed pressure drop in different regions of fixed fluidized bed reactor during top feeding and bottom feeding, respectively, at various gas velocities with the fluidization image of solid particles monitored at the same time. By comparing the changes in bed density and operating gas velocity in different regions of fixed fluidized bed reactor, the influence of top feeding and bottom feeding patterns on fluidization behavior could be investigated. The results showed that the bed density in top feeding reactor responded more stably to the change in gas velocity along with the advantage of working in a wider range of operating gas velocities. Based on this study, it is concluded that existing bottom feeding reactor configurations cannot meet the fluidization requirements; and optimization of bottom feeding reactor will be needed. 展开更多
关键词 feeding method fixed fluidized bed fluidization behavior bed density operating gas velocity
下载PDF
Experimental and Computational Investigations on Severe Slugging in A Catenary Riser 被引量:3
11
作者 DUAN Jin-long CHEN Ke +1 位作者 YOU Yun-xiang GAO Song 《China Ocean Engineering》 SCIE EI CSCD 2017年第6期653-664,共12页
Severe slugging can occur in a pipeline-riser system at relatively low liquid and gas flow rates during gas-oil transportation, possibly causing unexpected damage to the production facilities. Experiments with air and... Severe slugging can occur in a pipeline-riser system at relatively low liquid and gas flow rates during gas-oil transportation, possibly causing unexpected damage to the production facilities. Experiments with air and water are conducted in a horizontal and downward inclined pipeline followed by a catenary riser in order to investigate the mechanism and characteristics of severe slugging. A theoretical model is introduced to compare with the experiments. The results show that the formation mechanism of severe slugging in a catenary riser is different from that in a vertical riser due to the riser geometry and five flow patterns are obtained and analyzed. A gas-liquid mixture slug stage is observed at the beginning of one cycle of severe slugging, which is seldom noticed in previous studies. Based on both experiments and computations, the time period and variation of pressure amplitude of severe slugging are found closely related to the superficial gas velocity, implying that the gas velocity significantly influences the flow patterns in our experiments. Moreover, good agreements between the experimental data and the numerical results are shown in the stability curve and flow regime map, which can be a possible reference for design in an offshore oil-production system. 展开更多
关键词 severe slugging flow patterns pipeline-catenary-riser system superficial gas and liquid velocities theoretical model
下载PDF
Estimate of Global Sea-Air CO_2 Flux with Sea-State-Dependent Parameterization 被引量:2
12
作者 HU Wei GUAN Changlong 《Journal of Ocean University of China》 SCIE CAS 2008年第3期237-240,共4页
Although the annual global sea-air CO2 flux has been estimated extensively with various wind-dependent-k parameterizations,uncertainty still exists in the estimates. The sea-state-dependent-k parameterization is expec... Although the annual global sea-air CO2 flux has been estimated extensively with various wind-dependent-k parameterizations,uncertainty still exists in the estimates. The sea-state-dependent-k parameterization is expected to improve the uncertainty existing in these estimates. In the present study,the annual global sea-air CO2 flux is estimated with the sea-state-dependent-k parameterization proposed by Woolf(2005) ,using NOAA/NCEP reanalysis wind speed and hindcast wave data from 1998 to 2006,and a new estimate,-2.18 Gt C year-1,is obtained,which is comparable with previous estimates with biochemical methods. It is interesting to note that the averaged value of previous estimates with various wind-dependent-k parameterizations is almost identical to that of previous estimates with biochemical methods by various authors,and that the new estimate is quite consistent with these averaged estimates. 展开更多
关键词 sea-air CO2 exchange global CO2 flux: gas transfer velocity sea-state wave development status
下载PDF
Low-Temperature Selective Catalytic Reduction of NO with NH_3 over Fe–Ce–O_x Catalysts 被引量:5
13
作者 Yan Sun Ying Guo +1 位作者 Wei Su Yajuan Wei 《Transactions of Tianjin University》 EI CAS 2017年第1期35-42,共8页
In this study, we used a simple impregnation method to prepare Fe-Ce-O<sub> x </sub> catalysts and tested them regarding their low-temperature (200-300 °C) selective catalytic reduction (SCR) of ... In this study, we used a simple impregnation method to prepare Fe-Ce-O<sub> x </sub> catalysts and tested them regarding their low-temperature (200-300 °C) selective catalytic reduction (SCR) of NO using NH<sub>3</sub>. We investigated the effects of Fe/Ce molar ratio, the gas hourly space velocity (GHSV), the stability and SO<sub>2</sub>/H<sub>2</sub>O resistance of the catalysts. The results showed that the FeCe(1:6)O<sub> x </sub> (Ce/Fe molar ratio is 1:6) catalyst, which has some ordered parallel channels, exhibited good SCR performance. The FeCe(1:6)O<sub> x </sub> catalyst had the highest NO conversion with an activity of 94-99% at temperatures between 200 and 300 °C at a space velocity of 28,800 h<sup>−1</sup>. The NO conversion for the FeCe(1:6)O<sub> x </sub> catalyst also reached 80-98% between 200 and 300 °C at a space velocity of 204,000 h<sup>−1</sup>. In addition, the FeCe(1:6)O<sub> x </sub> catalyst demonstrated good stability in a 10-h SCR reaction at 200-300 °C. Even in the presence of SO<sub>2</sub> and H<sub>2</sub>O, the FeCe(1:6)O<sub> x </sub> catalyst exhibited good SCR performance. 展开更多
关键词 Fe-Ce-O x Low-temperature selective catalytic reduction Fe/Ce molar ratio gas hourly space velocity Stability SO2/H2O resistance
下载PDF
Wellbore drift flow relation suitable for full flow pattern domain and full dip range 被引量:1
14
作者 LOU Wenqiang WANG Zhiyuan +4 位作者 LI Pengfei SUN Xiaohui SUN Baojiang LIU Yaxin SUN Dalin 《Petroleum Exploration and Development》 CSCD 2022年第3期694-706,共13页
Aiming at the simulation of multi-phase flow in the wellbore during the processes of gas kick and well killing of complex-structure wells(e.g.,directional wells,extended reach wells,etc.),a database including 3561 gro... Aiming at the simulation of multi-phase flow in the wellbore during the processes of gas kick and well killing of complex-structure wells(e.g.,directional wells,extended reach wells,etc.),a database including 3561 groups of experimental data from 32 different data sources is established.Considering the effects of fluid viscosity,pipe size,interfacial tension,fluid density,pipe inclination and other factors on multi-phase flow parameters,a new gas-liquid two-phase drift flow relation suitable for the full flow pattern and full dip range is established.The distribution coefficient and gas drift velocity models with a pipe inclination range of-90°–90°are established by means of theoretical analysis and data-driven.Compared with three existing models,the proposed models have the highest prediction accuracy and most stable performance.Using a well killing case with the backpressure method in the field,the applicability of the proposed model under the flow conditions with a pipe inclination range of-90°–80°is verified.The errors of the calculated shut in casing pressure,initial back casing pressure and casing pressure when adjusting the displacement are 2.58%,3.43%,5.35%,respectively.The calculated results of the model are in good agreement with the field backpressure data. 展开更多
关键词 wellbore pressure control multi-phase flow drift flow model gas drift velocity distribution coefficient
下载PDF
Evaluation of gas condensate reservoir behavior using velocity dependent relative permeability during the numerical well test analysis 被引量:2
15
作者 Arash Azamifard Mahnaz Hekmatzadeh Bahram Dabir 《Petroleum》 2016年第2期156-165,共10页
Gas condensate is one of the most different fluids in reservoir simulation due to retrograde condensation in case of pressure reduction.In this kind of fluids,two phenomena named negative inertia and positive coupling... Gas condensate is one of the most different fluids in reservoir simulation due to retrograde condensation in case of pressure reduction.In this kind of fluids,two phenomena named negative inertia and positive coupling,become significant in the high velocity zone around the wellbore.In this study,a modified black oil simulator is developed that take into account the velocity dependent relative permeability.Against the industrial simulator that assumes linear variation of transmissibilities by pressure,modified black oil nonlinear equations are solved directly without linearization.The developed code is validated by ECLIPSE simulator.The behavior of two real gas condensate fluids,a lean and a rich one,are compared with each other.For each fluid,simulations of PVT experiments are carried out to calculate black oil property applying Coats approach for gas condensate fluids.For both fluids,the proposed models for gas condensate velocity dependent relative permeability show different influence of velocity on relative permeability in the same conditions.Moreover,it is observed that higher flow rate of gas production leads to more condensate production during constant rate well testing. 展开更多
关键词 gas condensate velocity dependent relative permeability Modified black oil simulation Numerical well testing
原文传递
Numerical study of atmospheric-pressure argon plasma jet propagating into ambient nitrogen
16
作者 Yuanyuan JIANG Yanhui WANG +2 位作者 Yamin HU Jiao ZHANG Dezhen WANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第5期17-28,共12页
A 2D axial symmetry fluid model is applied to study the features of an atmospheric-pressure argon(Ar) plasma jet propagating into ambient nitrogen(N_(2)) driven by a pulsed voltage,emphasizing the influence of gas vel... A 2D axial symmetry fluid model is applied to study the features of an atmospheric-pressure argon(Ar) plasma jet propagating into ambient nitrogen(N_(2)) driven by a pulsed voltage,emphasizing the influence of gas velocity on the dynamic characteristics of the jet. The results show that the Ar jet exhibits a cylindrical-shaped channel and the jet channel gradually shrinks with the increase in propagation length. The jet propagation velocity varies with time. Inside the dielectric tube, the plasma jet accelerates propagation and reaches its maximum value near the nozzle. Exiting the tube, its velocity quickly decreases and when approaching the metal plane,the decrease in jet velocity slows down. The increase in gas speed results in the variation of jet spatial distribution. The electron density presents a solid structure at lower gas flow speeds,whereas an annular structure can be observed under the higher gas flow velocity in the ionization head. The jet length increases with the flow velocity. However, when the flow velocity exceeds a critical value, the increase in the rate of the plasma jet length slows down. In addition, the gas velocity effect on the generation and transport of the reactive particles is also studied and discussed. 展开更多
关键词 atmospheric-pressure argon plasma jet gas flow velocity 2D simulation propagation characteristics reactive species
下载PDF
Characterization of bubble behaviors in a dense phase pulsed gas-solid fluidized bed for dry coal processing 被引量:3
17
作者 Yanjiao Li Fenglong Zhu +4 位作者 Yadong Zhang Yuemin Zhao Gansu Zhang Qingqing Huang Liang Dong 《Particuology》 SCIE EI CAS CSCD 2020年第6期83-91,共9页
Pulsed gas-solid fluidized beds can effectively separate fine coal,and bubbles play an important role in creating suitable separation conditions.The present study performed statistical and image analyses of the evolut... Pulsed gas-solid fluidized beds can effectively separate fine coal,and bubbles play an important role in creating suitable separation conditions.The present study performed statistical and image analyses of the evolution of bubbles in a two-dimensional pulsed gas-solid fluidized bed using a high-speed dynamic camera.The effects of apparent gas velocity,pulsation frequency and particle size on bubble characteristics and bed expansi on were analyzed.The results indicate that,when a fluctuation freque ncy is added,the expa nsion height of the bed in creases,the effect of attachme nt to the bed wall decreases,the leading diameter and rising velocity of the bubbles both decrease and the degree of bubble deformation increases.These trends are also more obvious for fine particles.These findings dem on strate that a high density pulsed gas-solid fluidized bed can effectively combine gases and solids to produce a uniform,stable mixture.The bubble diameter and rising velocity were also simulated in the present work,and the relationship between the two was established using a fitting model with an error within 5%.This model provides an effective means of predicting bubble velocity as well as studying the distribution of the bubble phase and improving the stability of the bed density. 展开更多
关键词 Apparent gas velocity Pulsation frequency Bubble diameter Rising velocity Deformation degree Fluidized bed
原文传递
Motion characteristics and density separation of fine coal in an inflatable-inclined liquid-solid fluidized bed 被引量:1
18
作者 Bo Lv Bobing Dong +1 位作者 Xiaowei Deng Chaojun Fang 《Particuology》 SCIE EI CAS CSCD 2021年第5期299-307,共9页
To improve the adaptability of fluidized beds for fine coal separation,a new type of liquid-solid fluidized bed was constructed,i.e.,the inflatable-inclined liquid-solid fluidized bed(IILSFB).A combination of simulati... To improve the adaptability of fluidized beds for fine coal separation,a new type of liquid-solid fluidized bed was constructed,i.e.,the inflatable-inclined liquid-solid fluidized bed(IILSFB).A combination of simulation analysis and separation experiments was used to analyze the fluidization characteristics and separation performance of the IILSFB.The results showed that there was upflow and downflow in the fluidized bed.The upflow was mainly composed of water flow,followed by light and heavy particles;on the other hand,the downflow was caused by the backflow of heavy particles that settled at the inclined section.In addition,the light particles that settled at the inclined section could return to the rising water flow under the action of secondary airflow.As the water velocity,separation time,and secondary gas velocity increased,the comprehensive separation efficiency of fine coal in the fluidized bed improved,while the value decreased as the feed quantity increased.This also indicated the order of importance for these four factors,i.e.,water velocity,separation time,feed quantity,and secondary gas velocity,on fluidisation.Furthermore,the comprehensive separation efficiency of 0.1-1 mm fine coal varied significantly with various factors,while that of∼0.1 mm and 1-3 mm fine coal was always at a low value.In the latter case,the classification process of the size fraction was significantly better than the separation process in the fluidized bed.Under optimal working conditions,an IILSFB was used to separate the fine coal(0.1-1 mm).The yield of clean coal was 37.95% with an ash content of 12.11%,and the possible error was 0.085 g/cm^(3),indicating that the IILSFB had good separation performance for 0.1-1 mm fine coal. 展开更多
关键词 Inflatable-inclined liquid-solid fluidized bed Fine coal separation FLUIDIZATION Separation efficiency Secondary gas velocity Size fraction
原文传递
A modified wake model in bubble-induced three-phase inverse fluidized bed(BIFB)
19
作者 Keying Ma Xiliang Sun +1 位作者 Yuanyuan Shao Jesse Zhu 《Particuology》 SCIE EI CAS CSCD 2022年第6期133-138,共6页
A modified wake model was proposed for the newly developed bubble-induced three-phase inverse fluidized bed(BIFB),by combining the generalized wake model and the gas-perturbed liquid model.On the basis of the modified... A modified wake model was proposed for the newly developed bubble-induced three-phase inverse fluidized bed(BIFB),by combining the generalized wake model and the gas-perturbed liquid model.On the basis of the modified wake model,the solids and liquid holdups and the complete fluidization gas velocity in BIFB system have been successfully predicted with two established correlations.The predictions achieved very good agreements with the experimental data. 展开更多
关键词 Generalized wake model Solids holdup Liquid holdup Complete fluidization gas velocity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部