期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
For more and purer hydrogen-the progress and challenges in water gas shift reaction 被引量:1
1
作者 Limin Zhou Yanyan Liu +8 位作者 Shuling Liu Huanhuan Zhang Xianli Wu Ruofan Shen Tao Liu Jie Gao Kang Sun Baojun Li Jianchun Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期363-396,I0010,共35页
The water gas shift(WGS) reaction is a standard reaction that is widely used in industrial hydrogen production and removal of carbon monoxide. The improved catalytic performance of WGS reaction also contributes to amm... The water gas shift(WGS) reaction is a standard reaction that is widely used in industrial hydrogen production and removal of carbon monoxide. The improved catalytic performance of WGS reaction also contributes to ammonia synthesis and other reactions. Advanced catalysts have been developed for both high and low-temperature reactions and are widely used in industry. In recent years, supported metal nanoparticle catalysts have been researched due to their high metal utilization. Low-temperature catalysts have shown promising results, including high selectivity, high shift rates, and higher activity potential. Additionally, significant progress has been made in removing trace CO through the redox reaction in electrolytic cell. This paper reviews the development of WGS reaction catalysts, including the reaction mechanism, catalyst design, and innovative research methods. The catalyst plays a crucial role in the WGS reaction, and this paper provides an instant of catalyst design under different conditions. The progress of catalysts is closely related to the development of advanced characterization techniques.Furthermore, modifying the catalyst surface to enhance activity and significantly increase reaction kinetics is a current research direction. This review goals to stimulate a better understanding of catalyst design, performance optimization, and driving mechanisms, leading to further progress in this field. 展开更多
关键词 water gas shift reaction Hydrogen production Heterogeneous catalysis Reaction Mechanism Single atomic catalysts
下载PDF
Adaptability of Development Methods for Offshore Gas Cap Edge Water Reservoirs under Different Permeability Levels
2
作者 Shaopeng Wang Pengfei Mu +2 位作者 Jie Tan Rong Fu Mo Zhang 《Open Journal of Applied Sciences》 2023年第7期1029-1038,共10页
The BZ 34-1 oilfield is a typical gas cap edge water reservoir in the Bohai oilfield. The main characteristics of the oilfield were multi-phase sand body stacking and the sand body was composed of three parts: gas cap... The BZ 34-1 oilfield is a typical gas cap edge water reservoir in the Bohai oilfield. The main characteristics of the oilfield were multi-phase sand body stacking and the sand body was composed of three parts: gas cap, oil reservoir, and edge water. The actual production site results show that the permeability difference of multi-layer sand bodies has a serious impact on the development effect. This article establishes a typical reservoir model numerical model based on the total recovery degree of the reservoir and the recovery degree of each layer, and analyzes the impact of permeability gradient. As the permeability gradient increases, the total recovery degree of all four well patterns decreases, and the total recovery degree gradually decreases. The recovery degree of low permeability layers gradually decreases, and the recovery degree of high permeability layers gradually increases. As the permeability gradient increases, the degree of recovery gradually decreases under different water contents. As the permeability gradient increases, the reduction rate of remaining oil saturation in low permeability layers is slower, while the reduction rate of remaining oil saturation in high permeability layers was faster. By analyzing the impact of permeability gradient on the development effect of oil fields, we could further deepen our understanding of gas cap edge water reservoirs and guide the development of this type of oil field. 展开更多
关键词 Bohai Sea gas Cap and Bottom water Reservoir Permeability Gradient Well Pattern Recovery Degree
下载PDF
Effect of Mg/Al atom ratio of support on catalytic performance of Co-Mo/MgO-Al_2O_3 catalyst for water gas shift reaction 被引量:6
3
作者 Yixin Lian Huifang Wang Quanxing Zheng Weiping Fang Yiquan Yang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第2期161-166,共6页
Co-Mo-based catalysts supported on mixed oxide supports MgO-Al2O3 with different Mg/Al atom ratios for water gas shift reaction were studied by means of TPR, Raman, XPS and ESR. It was found that the octahedral Mo spe... Co-Mo-based catalysts supported on mixed oxide supports MgO-Al2O3 with different Mg/Al atom ratios for water gas shift reaction were studied by means of TPR, Raman, XPS and ESR. It was found that the octahedral Mo species in oxidized Co-Mo/MgO(x)-Al2O3 catalyst and the contents of Mo^5+, Mo^4+, S^2- and S^2-2 species in the functioning catalysts increased with increasing the Mg/Al atom ratio of the support under the studied experimental conditions. This is favorable for the formation of the active Co-Mo-S phase of the catalysts. Catalytic performance testing results showed that the catalysts Co-Mo/MgO-Al2O3 with the Mg/Al atom ratio of the support in the range of 0.475-0.525 exhibited optimal catalytic activity for the reaction. 展开更多
关键词 Co-Mo catalyst reduction SULFIDATION mixed support water gas shift
下载PDF
Reverse water gas shift reaction over Co-precipitated Ni-CeO_2 catalysts 被引量:13
4
作者 王路辉 张少星 刘源 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第1期66-70,共5页
The Ni-CeO2 catalysts with different Ni contents were prepared by a co-precipitation method and used for Reverse Water Gas Shift (RWGS) reaction. 2wt.%Ni-CeO2 showed excellent catalytic performance in terms of activ... The Ni-CeO2 catalysts with different Ni contents were prepared by a co-precipitation method and used for Reverse Water Gas Shift (RWGS) reaction. 2wt.%Ni-CeO2 showed excellent catalytic performance in terms of activity, selectivity, and stability for RWGS reaction. Characterizations of the catalyst samples were conducted by XRD and TPR. The results indicated that, in Ni-CeO2 catalysts, there were three kinds of nickel, nickel ions in ceria lattice, highly dispersed NiO and bulk NiO. Oxygen vacancies were formed in CeO2 lattice due to the incorporation of Ni^2+ ions into ceria lattice. Oxygen vacancies formed in ceria lattice and highly dispersed Ni were key active components for RWGS, and bulk Ni was key active component for methanation of CO2. 展开更多
关键词 reverse water gas shift reaction NICKEL CEO2 oxygen vacancy
下载PDF
A novel steady-state productivity equation for horizontal wells in bottom water drive gas reservoirs 被引量:3
5
作者 Zhang Liehui Zhao Yulong Liu Zhibin 《Petroleum Science》 SCIE CAS CSCD 2011年第1期63-69,共7页
It is known that there is a discrepancy between field data and the results predicted from the previous equations derived by simplifying three-dimensional(3-D) flow into two-dimensions(2-D).This paper presents a ne... It is known that there is a discrepancy between field data and the results predicted from the previous equations derived by simplifying three-dimensional(3-D) flow into two-dimensions(2-D).This paper presents a new steady-state productivity equation for horizontal wells in bottom water drive gas reservoirs.Firstly,the fundamental solution to the 3-D steady-state Laplace equation is derived with the philosophy of source and the Green function for a horizontal well located at the center of the laterally infinite gas reservoir.Then,using the fundamental solution and the Simpson integral formula,the average pseudo-pressure equation and the steady-state productivity equation are achieved for the horizontal section.Two case-studies are given in the paper,the results calculated from the newly-derived formula are very close to the numerical simulation performed with the Canadian software CMG and the real production data,indicating that the new formula can be used to predict the steady-state productivity of such horizontal gas wells. 展开更多
关键词 Horizontal well point-source function bottom water driver gas reservoir steady-state productivity
下载PDF
Ceria modified three-dimensionally ordered macro-porous Pt/TiO_2 catalysts for water-gas shift reaction 被引量:3
6
作者 梁皓 张媛 刘源 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第3期425-430,共6页
Three-dimensionally ordered macro-porous (3DOM) TiO2 and ceria-modified 3DOM TiO2 supported platinum catalysts were prepared with template and impregnation methods, and the resultant samples were characterized by sc... Three-dimensionally ordered macro-porous (3DOM) TiO2 and ceria-modified 3DOM TiO2 supported platinum catalysts were prepared with template and impregnation methods, and the resultant samples were characterized by scanning electron microscopy(SEM), X-ray diffractometer(XRD), high-resolution transmission electron microscopy(HRTEM) and temperature programmed reducfion(TPR) techniques. The catalytic performances over the platinum-based catalysts were investigated for water-gas shift (WGS) reaction in a wide temperature range (180-360 ℃). The results showed that 3DOM Pt/TiO2 catalyst exhibited obviously better catalytic performance than the corresponding non macro-porous catalyst, owing to the macro-porous structure favoring mass transfer. Addition of celia into 3DOM Pt/TiO2 led to improvement of catalytic activity. TPR and HRTEM results showed that the interaction existed between ceria and titanium oxide and addition of ceria promoted the reducibility of platinum oxide and TiO2 on the interface of platinum and TiO2 particles, which contributed to high activity of the celia modified catalysts. The results indicated that ceria-modified 3DOM Pt/TiO2 was a promising candidate of fuel cell oriented WGS catalyst. 展开更多
关键词 three dimensionally ordered CERIA macro-porous water gas shift PLATINUM rare earths
下载PDF
Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels(<100μm)for bubble/gas manipulation 被引量:7
7
作者 Jiale Yong Qing Yang +2 位作者 Jinglan Huo Xun Hou Feng Chen 《International Journal of Extreme Manufacturing》 SCIE EI 2022年第1期35-49,共15页
Underwater transportation of bubbles and gases has essential applications in manipulating and using gas,but achieving this function at the microscopic level remains a significant challenge.Here,we report a strategy to... Underwater transportation of bubbles and gases has essential applications in manipulating and using gas,but achieving this function at the microscopic level remains a significant challenge.Here,we report a strategy to self-transport gas in water along a laser-induced open superhydrophobic microchannel with a width less than 100μm.The femtosecond laser can directly write superhydrophobic and underwater superaerophilic microgrooves on the polytetrafluoroethylene(PTFE)surfaces.In water,the single laser-induced microgroove and water medium generate a hollow microchannel.When the microchannel connects two superhydrophobic regions in water,the gas spontaneously travels from the small region to the large area along this hollow microchannel.Gas self-transportation can be extended to laser-drilled microholes through a thin PTFE sheet,which can even achieve anti-buoyancy unidirectional penetration.The gas can overcome the bubble’s buoyance and spontaneously travel downward.The Laplace pressure difference drives the processes of spontaneous gas transportation and unidirectional bubble passage.We believe the property of gas self-transportation in the femtosecond laser-structured open superhydrophobic and underwater superaerophilic microgrooves/microholes has significant potential applications related to manipulating underwater gas. 展开更多
关键词 femtosecond laser gas transportation SUPERHYDROPHOBICITY underwater superaerophilicity water/gas separation
下载PDF
Boosting the water gas shift reaction on Pt/CeO_(2)-based nanocatalysts by compositional modification: Support doping versus bimetallic alloying 被引量:3
8
作者 Kun Yuan Xiao-Chen Sun +4 位作者 Hai-Jing Yin Liang Zhou Hai-Chao Liu Chun-Hua Yan Ya-Wen Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期241-249,共9页
The water gas shift reaction is of vital significance for the generation and transition of energy due to the application in hydrogen production and industries such as ammonia synthesis and fuel cells.The influence of ... The water gas shift reaction is of vital significance for the generation and transition of energy due to the application in hydrogen production and industries such as ammonia synthesis and fuel cells.The influence of support doping and bimetallic alloying on the catalytic performance of Pt/Ce O_(2)-based nanocatalysts in water gas shift reaction was reported in this work.Various lanthanide ions and 3d transition metals were respectively introduced into the Ce O_(2)support or Pt to form Pt/Ce O_(2):Ln(Ln=La,Nd,Gd,Tb,Yb)and Pt M/Ce O_(2)(M=Fe,Co,Ni)nanocatalysts.The sample of Pt/Ce O_(2):Tb showed the highest activity(TOF at 200℃=0.051 s^(-1))among the Pt/Ce O_(2):Ln and the undoped Pt/Ce O_(2)catalysts.Besides,the sample of Pt Fe/Ce O_(2)exhibited the highest activity(TOF at 200℃=0.12 s^(-1))among Pt M/Ce O_(2)catalysts.The results of the multiple characterizations indicated that the catalytic activity of Pt/Ce O_(2):Ln catalysts was closely correlated with the amount of oxygen vacancies in doped ceria support.However,the different activity of Pt M/Ce O_(2)bimetallic catalysts was owing to the various Pt oxidation states of the bimetals dispersed on ceria.The study of the reaction pathway indicated that both the samples of Pt/Ce O_(2)and Pt/Ce O_(2):Tb catalyzed the reaction through the formate pathway,and the enhanced activity of the latter derived from the increased concentration of oxygen vacancies along with promoted water dissociation.As for the sample of Pt Fe/Ce O_(2),its catalytic mechanism was the carboxyl route with a higher reaction rate due to the moderate valence of Pt along with improved CO activation. 展开更多
关键词 Pt/CeO_(2)catalysts watergas shift reaction Support doping Bimetallic alloying
下载PDF
Monolithic macroporous catalysts—a new route for miniaturization of water-gas shift reactor 被引量:1
9
作者 Hao Liang Yuan Zhang Yuan Liu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第4期436-440,共5页
Monolithic macroporous Pt/CeO2/Al2O3 catalysts were prepared using concentrated emulsions synthesis route, and the obtained samples were characterized with SEM, TG, TEM, XRD and TPR techniques. These monolithic cataly... Monolithic macroporous Pt/CeO2/Al2O3 catalysts were prepared using concentrated emulsions synthesis route, and the obtained samples were characterized with SEM, TG, TEM, XRD and TPR techniques. These monolithic catalysts were applied to water gas shift (WGS) reaction in reformed gases. The SEM and TEM results indicated that the monoliths possessed macroporosity, and that the platinum particles homogeneously dispersed on the supports with the particle size in the range of 1-2 nm. The reducibility of the catalysts was characterized by TPR method, and it was shown that the monolithic PtOx/CeO2/Al2O3 exhibited the similar reducibility property to that of the particle PtOx/CeO2 reported in literatures. The CO conversion over the monolithic catalysts is higher than that over micro-reactor catalysts for WGS reaction in the reformed gases conditions, indicating that the monolithic macroporous catalysts is a potential new route for miniaturization of WGS reactor. 展开更多
关键词 MACROPOROUS MONOLITH MINIATURIZATION water gas shift PLATINUM
下载PDF
Experimental study on total dissolved gas supersaturation in water 被引量:1
10
作者 Lu QU Ran LI +2 位作者 Jia LI Ke-feng LI Lin WANG 《Water Science and Engineering》 EI CAS 2011年第4期396-404,共9页
More and more high dams have been constructed and operated in China. The total dissolved gas (TDG) supersaturation caused by dam discharge leads to gas bubble disease or even death of fish, Through a series of exper... More and more high dams have been constructed and operated in China. The total dissolved gas (TDG) supersaturation caused by dam discharge leads to gas bubble disease or even death of fish, Through a series of experiments, the conditions and requirements of supersaturated TDG generation were examined in this study. The results show that pressure (water depth), aeration, and bubble dissolution time are required for supersaturated TDG generation, and the air-water contact area and turbulence intensity are the main factors that affect the generation rate of supersaturated TDG. The TDG supersaturation levels can be reduced by discharging water to shallow shoals downstream of the dam or using negative pressure pipelines. Furthermore, the TDG supersaturation levels in stilling basins have no direct relationship with those in reservoirs. These results are of great importance for further research on the prediction of supersaturated TDG generation caused by dam discharge and aquatic protection. 展开更多
关键词 total dissolved gas supersaturation dissolved gas in water experimental study dam discharge
下载PDF
A three dimensional visualized physical simulation for natural gas charging in the micro-nano pore system 被引量:1
11
作者 QIAO Juncheng ZENG Jianhui +7 位作者 XIA Yuxuan CAI Jianchao CHEN Dongxia JIANG Shu HAN Guomeng CAO Zhe FENG Xiao FENG Sen- 《Petroleum Exploration and Development》 CSCD 2022年第2期349-362,共14页
A micro-nano pore three-dimensional visualized real-time physical simulation of natural gas charging, in-situ pore-scale computation, pore network modelling, and apparent permeability evaluation theory were used to in... A micro-nano pore three-dimensional visualized real-time physical simulation of natural gas charging, in-situ pore-scale computation, pore network modelling, and apparent permeability evaluation theory were used to investigate laws of gas and water flow and their distribution, and controlling factors during the gas charging process in low-permeability(tight) sandstone reservoir. By describing features of gas-water flow and distribution and their variations in the micro-nano pore system, it is found that the gas charging in the low permeability(tight) sandstone can be divided into two stages, expansion stage and stable stage. In the expansion stage, the gas flows continuously first into large-sized pores then small-sized pores, and first into centers of the pores then edges of pores;pore-throats greater than 20 μm in radius make up the major pathway for gas charging. With the increase of charging pressure, movable water in the edges of large-sized pores and in the centers of small pores is displaced out successively. Pore-throats of 20-50 μm in radius and pore-throats less than 20 μm in radius dominate the expansion of gas charging channels at different stages of charging in turn, leading to reductions in pore-throat radius, throat length and coordination number of the pathway, which is the main increase stage of gas permeability and gas saturation. Among which, pore-throats 30-50 μm in radius control the increase pattern of gas saturation. In the stable stage, gas charging pathways have expanded to the maximum, so the pathways keep stable in pore-throat radius, throat length, and coordination number, and irreducible water remains in the pore system, the gas phase is in concentrated clusters, while the water phase is in the form of dispersed thin film, and the gas saturation and gas permeability tend stable. Connected pore-throats less than 20 μm in radius control the expansion limit of the charging pathways, the formation of stable gas-water distribution, and the maximum gas saturation. The heterogeneity of connected pore-throats affects the dynamic variations of gas phase charging and gas-water distribution. It can be concluded that the pore-throat configuration and heterogeneity of the micro-nanometer pore system control the dynamic variations of the low-permeability(tight) sandstone gas charging process and gas-water distribution features. 展开更多
关键词 low permeability(tight)sandstone gas charging three-dimensional visualization physical simulation micro-nanometer pore network gas and water flow and distribution
下载PDF
An experimental and numerical study of chemically enhanced water alternating gas injection 被引量:2
12
作者 Saeed Majidaie Mustafa Onur Isa M.Tan 《Petroleum Science》 SCIE CAS CSCD 2015年第3期470-482,共13页
In this work, an experimental study combined with numerical simulation was conducted to investigate the potential of chemically enhanced water alternating gas (CWAG) injection as a new enhanced oil recovery method. ... In this work, an experimental study combined with numerical simulation was conducted to investigate the potential of chemically enhanced water alternating gas (CWAG) injection as a new enhanced oil recovery method. The unique feature of this new method is that it uses alkaline, surfactant, and polymer additives as a chemical slug which is injected during the water alternating gas (WAG) process to reduce the interfacial tension (IFT) and simultaneously improve the mobility ratio. In essence, the proposed CWAG process involves a combination of chemical flooding and immiscible carbon dioxide (CO2) injection and helps in IFT reduction, water blocking reduction, mobility control, oil swelling, and oil viscosity reduction due to CO2 dissolution. Its performance was compared with the conventional immiscible water alter- nating gas (I-WAG) flooding. Oil recovery utilizing CWAG was better by 26 % of the remaining oil in place after waterflooding compared to the recovery using WAG conducted under similar conditions. The coreflood data (cumulative oil and water production) were history mat- ched via a commercial simulator by adjusting the relative permeability curves and assigning the values of the rock and fluid properties such as porosity, permeability, and the experimentally determined IFT data. History matching ofthe coreflood model helped us optimize the experiments and was useful in determining the importance of the parameters influencing sweep efficiency in the CWAG process. The effectiveness of the CWAG process in pro- viding enhancement of displacement efficiency is evident in the oil recovery and pressure response observed in the coreflood. The results of sensitivity analysis on CWAG slug patterns show that the alkaline-surfactant-polymer injection is more beneficial after CO2 slug injection due to oil swelling and viscosity reduction. The CO2 slug size analysis shows that there is an optimum CO2 slug size, around 25 % pore volume which leads to a maximum oil recovery in the CWAG process. This study shows that the ultralow IFT system, i.e., IFT equaling 10 2 or 10 3 mN/ m, is a very important parameter in CWAG process since the water blocking effect can be minimized. 展开更多
关键词 Enhanced water alternating gas (CWAG) Enhanced oil recovery Interfacial tension Mobilitycontrol ~ water blocking
下载PDF
Promotion effect of Re additive on the bifunctional Ni catalysts for methanation coupling with water gas shift of biogas: Insights from activation energy
13
作者 Xinxin Dong Baosheng Jin +1 位作者 Zhiwei Kong Yiqing Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第6期1628-1636,共9页
The cheap manganese sand was first modified by H2O2 and was further creatively utilized as Ni-based catalyst support.In order to enhance the catalytic performance,Re was added into the Ni-based catalyst and the promot... The cheap manganese sand was first modified by H2O2 and was further creatively utilized as Ni-based catalyst support.In order to enhance the catalytic performance,Re was added into the Ni-based catalyst and the promotion effect of Re on the methanation coupling with water gas shift of biogas was investigated from the perspective of activation energy.It was found that CH4 and CO2 formation rates,which separately represented the reaction rate of methanation and water gas shift,were both enhanced after Re addition compared to non-added catalyst.Two kinetics models including empirical model and K-model were employed and from the results of calculation,it showed that Re selectively decreased the activation energy of methanation reaction and had little impact on the activation energy of water gas shift.The increased CO2 formation rate was owing to the assistance of accelerated H2O production from methanation rather than the activation energy change in water gas shift. 展开更多
关键词 PROMOTER Catalyst Nickel METHANATION water gas shift Kinetics
下载PDF
Synthesis of Dimethyl Ether from CO Hydrogenation: a Thermodynamic Analysis of the Influence of Water Gas Shift Reaction
14
作者 GuangxinJia YishengTan YizhuoHan 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2005年第1期47-53,共7页
Three reactions involved in dimethyl ether (DME) synthesis from COhydrogenation: methanol synthesis reaction (MSR), methanol dehydration reaction (MDR) and water gasshift reaction (WGSR) are studied by thermodynamic c... Three reactions involved in dimethyl ether (DME) synthesis from COhydrogenation: methanol synthesis reaction (MSR), methanol dehydration reaction (MDR) and water gasshift reaction (WGSR) are studied by thermodynamic calculation. For demonstrating this process indetail, three models, MSR, MSR+MDR, MSR+MDR+WGSR, are used. Their basic characteristics can beobtained by varying widely the ratios of H_2 to CO in the feed (no CO_2). Through thermodynamicanalysis a chemical synergic effect obviously exists in the second and third models. By comparisonbetween two models it is found that WGSR plays a special role in dimethyl ether synthesis. It ispossible for the two models to shift one to the other by regulating CO_2 concentration in feed. ForModel 2, the selectivity for DME in oxygenates (DME+methanol) does not change with the ratio of H_2to CO. 展开更多
关键词 dimethyl ether THERMODYNAMIC SYNgas synergic effect water gas shiftreaction
下载PDF
Study on the Quality Characteristics of Gas Field Water in Eastern Sichuan
15
作者 Zeng YUAN Yi ZHANG +5 位作者 Kaiyang TAN Na LI Bangyun SHU Deshun GAN Jun LU Yali LI 《Meteorological and Environmental Research》 CAS 2020年第5期174-177,共4页
Gas field water is the formation water produced together with natural gas in the process of natural gas exploitation.The gas field water treated is difficult to reach the standard due to its wide sources,numerous type... Gas field water is the formation water produced together with natural gas in the process of natural gas exploitation.The gas field water treated is difficult to reach the standard due to its wide sources,numerous types and complex composition.In addition,it can pollute soil,surface water and groundwater.In this study,the quality and pollution characteristics of gas field water in eastern Sichuan were studied by conventional water quality determination and GC-MS.The results show that the main components of gas field water in eastern Sichuan were chloride,COD Cr,SS,anionic surfactant,sulfide and other substances.The gas field water could be divided into two types according to the characteristics of water quality,of which one had high mineralization and high organic compounds,and the other had high sulfur and high organic compounds.There were 17 kinds of organic pollutants in the gas field water,mainly including alkanes,alcohols,esters and a small amount of acids. 展开更多
关键词 Eastern Sichuan gas field water Characteristics of water quality CATEGORY Organic compounds
下载PDF
Selective synthesis of carbon monoxide via formates in reverse water–gas shift reaction over alumina-supported gold catalyst
16
作者 Nobuhiro Ishito Kenji Hara +1 位作者 Kiyotaka Nakajima Atsushi Fukuoka 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期304-308,共5页
Thermal decomposition of formic acid on SiO2, CeO2 and γ-Al2O3 was studied as an elementary step of reverse water–gas shit reaction(RWGS) over supported Au catalysts. γ-Al2O3 showed the highest CO selectivity amo... Thermal decomposition of formic acid on SiO2, CeO2 and γ-Al2O3 was studied as an elementary step of reverse water–gas shit reaction(RWGS) over supported Au catalysts. γ-Al2O3 showed the highest CO selectivity among the tested oxides in the decomposition of formic acid. Infrared spectroscopy showed the formation of four formate species on γ-Al2O3: three η~1-type and one μ~2-type species, and these formates decomposed to CO at 473 K or higher. Au-loaded γ-Al2O3 samples were prepared by a depositionprecipitation method and used as catalysts for RWGS. The supported Au catalyst gave CO with high selectivity over 99% from CO2 and H2, which is attributed to the formation of formates on Au and subsequent decomposition to CO on γ-Al2O3. 展开更多
关键词 Reverse watergas shift reaction Carbon dioxide Hydrogen Formate Carbon monoxide Alumina Gold
下载PDF
Study on the Monitoring Malfunction of Water Pollution during Drought or Flood Period and Low-carbon and High-value Methodology--A Case Study of the Correlation Test of Water,Soil and Gas Pollution in Xiangxiang County
17
作者 LI Jin-song LI Lin-jie 《Meteorological and Environmental Research》 CAS 2011年第8期67-73,共7页
Based on the low-carbon and high-value methodology of chemical ecology and chemical informatics,combining theory and methods,taking saving,environmental protection,low carbon,high production,high value and circulation... Based on the low-carbon and high-value methodology of chemical ecology and chemical informatics,combining theory and methods,taking saving,environmental protection,low carbon,high production,high value and circulation as values and aims,the relationship between human and land as a basis,ecosystem as a center,overall control as a goal and agricultural ecological engineering as a mean,environmental pollution detection,as one of bottlenecks for agricultural products and food security,should be solved firstly;through the field survey in dry years from 2009 to 2010 when drought and flood were frequent and the frequency of drought was higher than that of flood,plus the determination of surface water flow and water quantity in a small typical river basin,the correlation of local water,soil and gas in the county could be found,and the transfer of monitoring focus from water environment to atmospheric environment was possible and necessary.The study would promote the quantitative research on the correlation among water,soil and gas,and the results were in accordance with the conclusions of related studies. 展开更多
关键词 Pollution monitoring REPRESENTATIVE Accuracy Correlation among water soil and gas data Low-carbon and high-value methodology China
下载PDF
MOLECULAR DYNAMICS SIMULATIONS OF FILLED AND EMPTY CAGE-LIKE WATER CLUSTERS IN LIQUID WATER AND THEIR SIGNIFICANCE TO GAS HYDRATE FORMATION MECHANISMS
18
作者 GUO Guangjun,ZHANG Yigang and ZHAO Yajuan Institute of Geology and Geophysics,Chinese Academy of sciences Beijing 100029,Chinese 《化工学报》 EI CAS CSCD 北大核心 2003年第z1期62-66,共5页
Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetime... Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetimes of these clusters are calculated according to their Lindemann index δ (t) using the criteria of δ≥0.07. For both the filled and empty clusters, we find the dynamics of bulk water determines the lifetimes of cage-like water clusters, and that the lifetime of 512 62 cage-like cluster is the same as that of 512 cage-like cluster. Although the methane molecule indeed makes the filled cage-like cluster more stable than the empty one, the empty cage-like cluster still has chance to be long-lived compared with the filled clusters. These observations support the labile cluster hypothesis on the formation mechanisms of gas hydrates. 展开更多
关键词 like in time that were MOLECULAR DYNAMICS SIMULATIONS OF FILLED AND EMPTY CAGE-LIKE water CLUSTERS IN LIQUID water AND THEIR SIGNIFICANCE TO gas HYDRATE FORMATION MECHANISMS of cage gas
下载PDF
Three-stage pyrolysis–steam reforming–water gas shift processing of household,commercial and industrial waste plastics for hydrogen production
19
作者 Rayed Alshareef Robert Sait-Stewart +1 位作者 Mohamad A.Nahil Paul T.Williams 《Waste Disposal and Sustainable Energy》 EI CSCD 2024年第1期25-37,共13页
Five common single plastics and nine different household,commercial and industrial waste plastics were processed using a three-stage(i)pyrolysis,(ii)catalytic steam reforming and(iii)water gas shift reaction system to... Five common single plastics and nine different household,commercial and industrial waste plastics were processed using a three-stage(i)pyrolysis,(ii)catalytic steam reforming and(iii)water gas shift reaction system to produce hydrogen.Pyrolysis of plastics produces a range of different hydrocarbon species which are subsequently catalytically steam reformed to produce H_(2)and CO and then undergo water gas shift reaction to produce further H_(2).The process mimics the commercial process for hydrogen production from natural gas.Processing of the single polyalkene plastics(high-density polyethylene(HDPE),low-density polyethylene(LDPE),and polypropylene(PP))produced similar H_(2)yields between 115 mmol and 120 mmol per gram plastic.Even though PS produced an aromatic product slate from the pyrolysis stage,further stages of reforming and water gas shift reaction produced a gas yield and composition similar to that of the polyalkene plastics(115 mmol H_(2)per gram plastic).PET gave significantly lower H_(2)yield(41 mmol per gram plastic)due to the formation of mainly CO,CO_(2)and organic acids from the pyrolysis stage which were not conducive to further reforming and water gas shift reaction.A mixture of the single plastics typical of that found in municipal solid waste produced a H_(2)yield of 102 mmol per gram plastic.Knowing the gas yields and composition from the single plastics enabled an estimation of the yields from a simulated waste plastic mixture and a‘real-world’waste plastic mixture to be determined.The different household,commercial and industrial waste plastic mixtures produced H_(2)yields between 70 mmol and 107 mmol per gram plastic.The H_(2)yield and gas composition from the single waste plastics gave an indication of the type of plastics in the mixed waste plastic samples. 展开更多
关键词 Waste plastic Hydrogen CATALYST Pyrolysis reforming water gas shift
原文传递
Experimental study of the effects of a multistage pore-throat structure on the seepage characteristics of sandstones in the Beibuwan Basin:Insights into the flooding mode
20
作者 Lei Wang Xiao Lei +7 位作者 Qiao-Liang Zhang Guang-Qing Yao Bo Sui Xiao-Jun Chen Ming-Wei Wang Zhen-Yu Zhou Pan-Rong Wang Xiao-Dong Peng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1044-1061,共18页
To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a... To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a crucial factor through a comparison of oil displacement in microscopic pore-throat experiments. The two-phase flow evaluation method based on the Li-Horne model is utilized to effectively characterize and quantify the seepage characteristics of different reservoirs, closely relating them to the distribution of microscopic pores and throats. It is observed that conglomerate sandstones at different stages exhibit significant heterogeneity and noticeable differences in seepage capacity, highlighting the crucial role played by certain large pore throats in determining seepage capacity and oil displacement efficiency. Furthermore, it was found that the displacement effects of conglomeratic sandstones with strong heterogeneity were inferior to those of conventional homogeneous sandstone, as evidenced by multiple displacement experiments conducted on core samples with varying granularities and flooding systems. Subsequently, core-based experiments on associated gas flooding after water flooding were conducted to address the challenge of achieving satisfactory results in a single displacement mode for reservoirs with significant heterogeneity. The results indicate that the oil recovery rates for associated gas flooding after water flooding increased by 7.3%-16.4% compared with water flooding alone at a gas-oil ratio of approximately 7000 m^(3)/m^(3). Therefore, considering the advantages of gas flooding in terms of seepage capacity, oil exchange ratio, and the potential for two-phase production, gas flooding is recommended as an energy supplement mode for homogeneous reservoirs in the presence of sufficient gas source and appropriate tectonic angle. On the other hand, associated gas flooding after water flooding is suggested to achieve a more favorable development effect compared to a single mode of energy supplementation for strongly heterogeneous sandstone reservoirs. 展开更多
关键词 Beibuwan Basin Multistage pore-throat structure Multistage seepage characteristics Microscopic visualization HETEROGENEITY gas/water flooding Flooding mode
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部