In hot and arid regions like the Saharan area,effective methods for cooling and humidifying intake air are essential.This study explores the utilization of a water trickle cooler as a promising solution to meet this o...In hot and arid regions like the Saharan area,effective methods for cooling and humidifying intake air are essential.This study explores the utilization of a water trickle cooler as a promising solution to meet this objective.In particular,the HASSI MESSAOUD area is considered as a testbed.The water trickle cooler is chosen for its adaptability to arid conditions.Modeling results demonstrate its effectiveness in conditioning air before it enters the compressor.The cooling system achieves a significant temperature reduction of 6 to 8 degrees Celsius,enhancing mass flow rate dynamics by 3 percent compared to standard cases without cooling.Moreover,the cooling system contributes to a remarkable 10 percent reduction in power consumption of gas turbines and a notable 10 percent increase in turbine efficiency.These findings highlight the potential of water trickle coolers in improving the performance and efficiency of gas turbine systems in hot and dry climates.展开更多
Double-layer structure of seal coating which consisted of a Ni5Al bond coating and a Ni25 graphite top coating were prepared on steel substrate of gas turbine compressor cylinder block.Bond coating was prepared by atm...Double-layer structure of seal coating which consisted of a Ni5Al bond coating and a Ni25 graphite top coating were prepared on steel substrate of gas turbine compressor cylinder block.Bond coating was prepared by atmospheric plasma spraying and top coating was prepared by flame spraying.The microstructure,mechanical properties and abradability of the coating were characterized by scanning elec-tron microscope(SEM),hardness tester,universal testing machine,thermal shock testing machine and abradability testing machine.The res-ults show that the overall spraying structure of the seal coating is uniform,the nickel metal phase is the skeleton supporting the entire coat-ing,and the coating is well bonded without separation.The seal coating has a bonding strength of not less than 7.7 MPa,excellent thermal stability,and thermal shock resistance cycle numbers at 500℃more than 50;the scratch length,deepest invasion depth and wear amount of the coating increase with rise of test temperature,with almost no coating adhesion,indicating that the seal coating has excellent abradability.展开更多
Gas turbines play core roles in clean energy supply and the construction of comprehensive energy systems.The control performance of primary frequency modulation of gas turbines has a great impact on the frequency cont...Gas turbines play core roles in clean energy supply and the construction of comprehensive energy systems.The control performance of primary frequency modulation of gas turbines has a great impact on the frequency control of the power grid.However,there are some control difficulties in the primary frequency modulation control of gas turbines,such as the coupling effect of the fuel control loop and speed control loop,slow tracking speed,and so on.To relieve the abovementioned difficulties,a control strategy based on the desired dynamic equation proportional integral(DDE-PI)is proposed in this paper.Based on the parameter stability region,a parameter tuning procedure is summarized.Simulation is carried out to address the ease of use and simplicity of the proposed tuning method.Finally,DDE-PI is applied to the primary frequency modulation system of an MS6001B heavy-duty gas turbine.The simulation results indicate that the gas turbine with the proposed strategy can obtain the best control performance with a strong ability to deal with system uncertainties.The proposed method shows good engineering application potential.展开更多
Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output t...Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output to 1925×108m3in 2020,making it the fourth largest gas-producing country in the world.Based on 1696 molecular components and carbon isotopic composition data of alkane gas in 70 large gas fields in China,the characteristics of carbon isotopic composition of alkane gas in large gas fields in China were obtained.The lightest and average values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become heavier with increasing carbon number,while the heaviest values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become lighter with increasing carbon number.Theδ^(13)C_(1)values of large gas fields in China range from-71.2‰to-11.4‰(specifically,from-71.2‰to-56.4‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-18.9‰for coal-derived gas,and from-35.6‰to-11.4‰for abiogenic gas).Based on these data,theδ^(13)C_(1)chart of large gas fields in China was plotted.Moreover,theδ^(13)C_(1)values of natural gas in China range from-107.1‰to-8.9‰,specifically,from-1071%o to-55.1‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-13.3‰for coal-derived gas,and from-36.2‰to-8.9‰for abiogenic gas.Based on these data,theδ^(13)C_(1)chart of natural gas in China was plotted.展开更多
The marine shipping industry faces challenges to reduce engine exhaust emissions and greenhouse gases (GHGs) from ships, and in particular, carbon dioxide. International regulatory bodies such as the International M...The marine shipping industry faces challenges to reduce engine exhaust emissions and greenhouse gases (GHGs) from ships, and in particular, carbon dioxide. International regulatory bodies such as the International Maritime Organization and National Environmental Agencies of many countries have issued rules and regulations to drastically reduce GHG and emissions emanating from marine sources. This study investigates the possibility of using natural gas and hydrogen as alternative fuels to diesel oil for marine gas turbines and uses a mathematical model to assess the effect of these alternative fuels on gas turbine thermodynamic performance. Results show that since natural gas is categorized as a hydrocarbon fuel, the thermodynamic performance of the gas turbine cycle using natural gas was close to that of the diesel case. However, the gas turbine thermal efficiency was found to be slightly lower for natural gas and hydrogen fuels compared to diesel fuel.展开更多
This paper describes the numerical calculations of gaseous reaction flows in a model of gas turbine combustors. The profiles of hydrodynamic and thermodynamic patterns in a three-dimensional combustor model are obtain...This paper describes the numerical calculations of gaseous reaction flows in a model of gas turbine combustors. The profiles of hydrodynamic and thermodynamic patterns in a three-dimensional combustor model are obtained by solving the governing differential transport equations. The well-established numerical prediction algorithm SIMPLE, the modified k-ε turbulence model and k-ε-g turbulent diffusion flame model have been adopted in computations. The β function has been selected as probability density function. The effect of combustion process on flow patterns has been investigated. The calculated results have been verified by experiments. They are in remarkably good agreement.展开更多
Typically, crude oil production in Nigeria always accompanied by surface production of associated gas. With little associated gas recovery facilities in place, majority of associated gas is continuously flared with fe...Typically, crude oil production in Nigeria always accompanied by surface production of associated gas. With little associated gas recovery facilities in place, majority of associated gas is continuously flared with few portions re-injected into the reservoir for enhance oil recovery (EOR). In addition to environmental hazards, wasting substantial amount of produced associated gas is deemed detrimental to a country currently generating less than 54% of its electric power requirement. Onsite power generation as one of the many means of utilization of associated gas has been conceived. Conversely, the availability and performance of the gas turbine engine for onsite associated gas utilization requires evaluation owing to variations in associated natural gas composition globally and the dependency of associated gas production on reservoirs and oil production activities. This paper presents an analytical investigation of gas turbine engine inspired by GE LMS100 frame engine for onsite utilization of associated gas in Nigeria. Gas turbine performance results are presented and performance parameters are compared against typical commercial natural gas grade.展开更多
The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo...The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo- nents, fluctuation velocity, Reynolds stress and recirculation zone length are obtained, respectively. Influences of geometric parameter of primary hole, arrangement of primary hole, inlet air temperature, first-stage swirler an- gle and fuel/air ratio on flow field are investigated, respectively. The experimental results reveal that the primary recirculation zone lengths of combustion flow field are shorter than those of cold flow field, and the primary reeir- culation zone lengths decrease with the increase of inlet air temperature and fuel/air ratio. The change of the geo- metric parameter of primary hole casts an important influence on the swirler flow field in two-stage swirler com- bustor.展开更多
Based on an elaboration of the resource potential and annual production of tight sandstone gas and shale gas in the United States and China,this paper reviews the researches on the distribution of tight sandstone gas ...Based on an elaboration of the resource potential and annual production of tight sandstone gas and shale gas in the United States and China,this paper reviews the researches on the distribution of tight sandstone gas and shale gas reservoirs,and analyzes the distribution characteristics and genetic types of tight sandstone gas reservoirs.In the United States,the proportion of tight sandstone gas in the total gas production declined from 20%-35%in 2008 to about 8%in 2023,and the shale gas production was 8310×10^(8)m^(3)in 2023,about 80%of the total gas production,in contrast to the range of 5%-17%during 2000-2008.In China,the proportion of tight sandstone gas in the total gas production increased from 16%in 2010 to 28%or higher in 2023.China began to produce shale gas in 2012,with the production reaching 250×10^(8)m^(3)in 2023,about 11%of the total gas production of the country.The distribution of shale gas reservoirs is continuous.According to the fault presence,fault displacement and gas layer thickness,the continuous shale gas reservoirs can be divided into two types:continuity and intermittency.Most previous studies believed that both tight sandstone gas reservoirs and shale gas reservoirs are continuous,but this paper holds that the distribution of tight sandstone gas reservoirs is not continuous.According to the trap types,tight sandstone gas reservoirs can be divided into lithologic,anticlinal,and synclinal reservoirs.The tight sandstone gas is coal-derived in typical basins in China and Egypt,but oil-type gas in typical basins in the United States and Oman.展开更多
Due to the fact that the turbine outlet temperature of aeroderivative three-shaft gas turbine is low,the conventional combined cycle is not suitable for three-shaft gas turbines.However,the humid air turbine(HAT)cycle...Due to the fact that the turbine outlet temperature of aeroderivative three-shaft gas turbine is low,the conventional combined cycle is not suitable for three-shaft gas turbines.However,the humid air turbine(HAT)cycle provides a new choice for aeroderivative gas turbine because the humidification process does not require high temperature.Existing HAT cycle plants are all based on single-shaft gas turbines due to their simple structures,therefore converting aeroderivative three-shaft gas turbine into HAT cycle still lacks sufficient research.This paper proposes a HAT cycle model on a basis of an aeroderivative three-shaft gas turbine.Detailed HAT cycle modelling of saturator,gas turbine and heat exchanger are carried out based on the modular modeling method.The models are verified by simulations on the aeroderivative three-shaft gas turbine.Simulation results show that the studied gas turbine with original size and characteristics could not reach the original turbine inlet temperature because of the introduction of water.However,the efficiency still increases by 0.16%when the HAT cycle runs at the designed power of the simple cycle.Furthermore,simulations considering turbine modifications show that the efficiency could be significantly improved.The results obtained in the paper can provide reference for design and analysis of HAT cycle based on multi-shaft gas turbine especially the aeroderivative gas turbine.展开更多
Causes of scale deposition in flue gas turbine expander of FCCU were analyzed based on some aspects,including the types and operating conditions of flue gas turbines,properties and composition of feedstocks and cataly...Causes of scale deposition in flue gas turbine expander of FCCU were analyzed based on some aspects,including the types and operating conditions of flue gas turbines,properties and composition of feedstocks and catalysts,and operating conditions of the reactor and regenerator.Some countermeasures were proposed for preventing scale deposition in flue gas turbine of FCCU.展开更多
Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra...Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.展开更多
The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantl...The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantly,but the origin analysis of different gas types has previously been weak.Based on the geochemical parameters of gas samples from different depths and the analysis of geological settings,this research covers the diverse origins of natural gas in different strata.The gas components are mainly methane with a small amount of C_(2+),and non-hydrocarbon gases,including nitrogen(N_(2)),hydrogen(H_(2)),carbon dioxide(CO_(2)),and helium(He).At greater depth,the carbon isotope of methane becomes heavier,and the hydrogen isotope points to a lacustrine sedimentary environment.With increasing depth,the origins of N_(2)and CO_(2)change gradually from a mixture of organic and inorganic to inorganic.The origins of hydrogen gas are complex and include organic sources,water radiolysis,water-rock(Fe^(2+)-containing minerals)reactions,and mantle-derived.The shales of Denglouku and Shahezi Formations,as source rocks,provide the premise for generation and occurrence of organic gas.Furthermore,the deep faults and fluid activities in Basement Formation control the generation and migration of mantle-derived gas.The discovery of a high content of H_(2)in study area not only reveals the organic and inorganic association of natural-gas generation,but also provides a scientific basis for the exploration of deep hydrogen-rich gas.展开更多
The authors propose a new closed cycle oxy-fuel gas turbine power plant that utilizes a nuclear heat generator. A pressurized water reactor (PWR) is designed to supply saturated steam to an oxy-fuel gas turbine for ...The authors propose a new closed cycle oxy-fuel gas turbine power plant that utilizes a nuclear heat generator. A pressurized water reactor (PWR) is designed to supply saturated steam to an oxy-fuel gas turbine for a specific power output increase The saturated steam from the reactor can have lower pressure and temperature than those of an existing PWR. In this study, the authors estimated plant performances from a heat balance model based on a conceptual design of a hybrid plant and calculated the generating costs of the proposed plant from the Japanese cost data of an existing PWR plant and an liquefied natural gas (LNG) combined cycle gas turbine plant. The generating efficiency of an oxy-fuel gas turbine plant without a nuclear steam generator is estimated to be less than 35%. Based on this efficiency, with a nuclear steam generator contributing to the power output of the proposed hybrid plant, the corresponding generating efficiency is estimated to be around 45%, even if the steam conditions are lower than in an existing PWR. The generating costs are 15-20% lower than those calculated from the weighted heat performances of both an oxy-fuel gas turbine plant without a nuclear steam generator and an existing PWR plant.展开更多
The structure and aerodynamics performance of gas turbine inlet system is an important part of technology of gas turbine installed on naval vessels. The design and numerical simulations of gas turbine inlet system are...The structure and aerodynamics performance of gas turbine inlet system is an important part of technology of gas turbine installed on naval vessels. The design and numerical simulations of gas turbine inlet system are conducted and reliable foundation for design and manufacture of marine gas turbine inlet system of high performance is provided. Numerical simulations and experiments of two inlet system models of gas turbine are conducted with satisfactory results and are of significance to the actual application of the inlet system.展开更多
This paper briefs the configuration and performance of large size gas turbines and their composed combined cycle power plants designed and produced by four large renown gas turbine manufacturing firms in the world, pr...This paper briefs the configuration and performance of large size gas turbines and their composed combined cycle power plants designed and produced by four large renown gas turbine manufacturing firms in the world, providing reference for the relevant sectors and enterprises in importing advanced gas turbines and technologies.展开更多
With the development of science and technology,the scale of industrial production continues to grow,and the types and quantities of gas raw materials used in industrial production and produced during the production pr...With the development of science and technology,the scale of industrial production continues to grow,and the types and quantities of gas raw materials used in industrial production and produced during the production process are also constantly increasing.These gases include flammable and explosive gases,and even contain toxic gases.Therefore,it is very important and necessary for gas sensors to detect and monitor these gases quickly and accurately.In recent years,a new two-dimensional material called MXene has attracted widespread attention in various applications.Their abundant surface functional groups and sites,excellent current conductivity,tunable surface chemistry,and outstanding stability make them promising for gas sensor applications.Since the birth of MXene materials,researchers have utilized the efficient and convenient solution etching preparation,high flexibility,and easily functionalize MXene with other materials to pre-pare composites for gas sensing.This has opened a new chapter in high-performance gas sensing materials and provided a new approach for advanced sensor research.However,previous reviews on MXene-based composite materials in gas sensing only focused on the performance of gas sensing,without systematically explaining the gas sensing mechanisms generated by different gases,as well as summarizing and predicting the advantages and disadvantages of MXene-based composite materials.This article reviews the latest progress in the application of MXene-based composite materials in gas sensing.Firstly,a brief summary was given of the commonly used methods for preparing gas sens-ing device structures,followed by an introduction to the key attributes of MXene related to gas sensing performance.This article focuses on the performance of MXene-based composite materials used for gas sensing,such as MXene/graphene,MXene/Metal oxide,MXene/Transition metal sulfides(TMDs),MXene/Metal-organic framework(MOF),MXene/Polymer.It summarizes the advantages and disadvantages of MXene com-posite materials with different composites and discusses the possible gas sensing mechanisms of MXene-based composite materials for different gases.Finally,future directions and inroads of MXenes-based composites in gas sensing are presented and discussed.展开更多
In the mid-21st century,natural gas will enter its golden age,and the era of natural gas is arriving.This paper reviews the development stages of global natural gas industry and the enlightenment of American shale gas...In the mid-21st century,natural gas will enter its golden age,and the era of natural gas is arriving.This paper reviews the development stages of global natural gas industry and the enlightenment of American shale gas revolution,summarizes the development history and achievements of the natural gas industry in China,analyzes the status and challenges of natural gas in the green and low-carbon energy transition,and puts forward the natural gas industry development strategies under carbon neutral target in China.The natural gas industry in China has experienced three periods:start,growth,and leap forward.At present,China has become the fourth largest natural gas producer and third largest natural gas consumer in the world,and has made great achievements in natural gas exploration and development theory and technology,providing important support for the growth of production and reserves.China has set its goal of carbon neutrality to promote green and sustainable development,which brings opportunities and challenges for natural gas industry.Natural gas has significant low-carbon advantages,and gas-electric peak shaving boosts new energy development;the difficulty and cost of development are more prominent.For the national energy security and harmonious development between economy and ecology under the carbon neutral goal,based on the principle of"comprehensive planning,technological innovation,multi-energy complementarity,diversified integration,flexibility and efficiency,optimization and upgrading",the construction of the production-supplystorage-marketing system has to be improved so as to boost the development of the natural gas industry.First,it is necessary to strengthen efforts in the exploration and development of natural gas,making projects and arrangement in key exploration and development areas,meanwhile,it is urgent to make breakthroughs in key science theories and technologies,so as to increase reserve and production.Second,it should promote green and innovative development of the natural gas by developing new techniques,expanding new fields and integrating with new energy.Third,there is a demand to realize transformation and upgrading of the supply and demand structure of natural gas by strengthening the layout of pipeline gas,liquefied natural gas and the construction of underground gas storage,establishing reserve system for improving abilities of emergency response and adjustment,raising the proportion of natural gas in the primary energy consumption and contributing to the transformation of energy consumption structure,realizing low-carbon resources utilization and clean energy consumption.展开更多
In recent years,great breakthroughs have been made in the exploration and development of natural gas in deep coal-rock reservoirs in Junggar,Ordos and other basins in China.In view of the inconsistency between the ind...In recent years,great breakthroughs have been made in the exploration and development of natural gas in deep coal-rock reservoirs in Junggar,Ordos and other basins in China.In view of the inconsistency between the industrial and academic circles on this new type of unconventional natural gas,this paper defines the concept of"coal-rock gas"on the basis of previous studies,and systematically analyzes its characteristics of occurrence state,transport and storage form,differential accumulation,and development law.Coal-rock gas,geologically unlike coalbed methane in the traditional sense,occurs in both free and adsorbed states,with free state in abundance.It is generated and stored in the same set of rocks through short distance migration,occasionally with the accumulation from other sources.Moreover,coal rock develops cleat fractures,and the free gas accumulates differentially.The coal-rock gas reservoirs deeper than 2000 m are high in pressure,temperature,gas content,gas saturation,and free-gas content.In terms of development,similar to shale gas and tight gas,coal-rock gas can be exploited by natural formation energy after the reservoirs connectivity is improved artificially,that is,the adsorbed gas is desorbed due to pressure drop after the high-potential free gas is recovered,so that the free gas and adsorbed gas are produced in succession for a long term without water drainage for pressure drop.According to buried depth,coal rank,pressure coefficient,reserves scale,reserves abundance and gas well production,the classification criteria and reserves/resources estimation method of coal-rock gas are presented.It is preliminarily estimated that the coal-rock gas in place deeper than 2000 m in China exceeds 30×10^(12)m^(3),indicating an important strategic resource for the country.The Ordos,Sichuan,Junggar and Bohai Bay basins are favorable areas for large-scale enrichment of coal-rock gas.The paper summarizes the technical and management challenges and points out the research directions,laying a foundation for the management,exploration,and development of coal-rock gas in China.展开更多
文摘In hot and arid regions like the Saharan area,effective methods for cooling and humidifying intake air are essential.This study explores the utilization of a water trickle cooler as a promising solution to meet this objective.In particular,the HASSI MESSAOUD area is considered as a testbed.The water trickle cooler is chosen for its adaptability to arid conditions.Modeling results demonstrate its effectiveness in conditioning air before it enters the compressor.The cooling system achieves a significant temperature reduction of 6 to 8 degrees Celsius,enhancing mass flow rate dynamics by 3 percent compared to standard cases without cooling.Moreover,the cooling system contributes to a remarkable 10 percent reduction in power consumption of gas turbines and a notable 10 percent increase in turbine efficiency.These findings highlight the potential of water trickle coolers in improving the performance and efficiency of gas turbine systems in hot and dry climates.
基金supported by Zhejiang Provincial Science and Technology Plan Project(Grant No.2022C01118).
文摘Double-layer structure of seal coating which consisted of a Ni5Al bond coating and a Ni25 graphite top coating were prepared on steel substrate of gas turbine compressor cylinder block.Bond coating was prepared by atmospheric plasma spraying and top coating was prepared by flame spraying.The microstructure,mechanical properties and abradability of the coating were characterized by scanning elec-tron microscope(SEM),hardness tester,universal testing machine,thermal shock testing machine and abradability testing machine.The res-ults show that the overall spraying structure of the seal coating is uniform,the nickel metal phase is the skeleton supporting the entire coat-ing,and the coating is well bonded without separation.The seal coating has a bonding strength of not less than 7.7 MPa,excellent thermal stability,and thermal shock resistance cycle numbers at 500℃more than 50;the scratch length,deepest invasion depth and wear amount of the coating increase with rise of test temperature,with almost no coating adhesion,indicating that the seal coating has excellent abradability.
基金supported by Science and Technology Project of Jiangsu Frontier Electric Technology Co.,Ltd. (Grant Number KJ202004),Gao A.M. (author who received the grant).
文摘Gas turbines play core roles in clean energy supply and the construction of comprehensive energy systems.The control performance of primary frequency modulation of gas turbines has a great impact on the frequency control of the power grid.However,there are some control difficulties in the primary frequency modulation control of gas turbines,such as the coupling effect of the fuel control loop and speed control loop,slow tracking speed,and so on.To relieve the abovementioned difficulties,a control strategy based on the desired dynamic equation proportional integral(DDE-PI)is proposed in this paper.Based on the parameter stability region,a parameter tuning procedure is summarized.Simulation is carried out to address the ease of use and simplicity of the proposed tuning method.Finally,DDE-PI is applied to the primary frequency modulation system of an MS6001B heavy-duty gas turbine.The simulation results indicate that the gas turbine with the proposed strategy can obtain the best control performance with a strong ability to deal with system uncertainties.The proposed method shows good engineering application potential.
基金Supported by the National Natural Science Foundation of China(41472120)General Project of National Natural Science Foundation of China(42272188)+1 种基金Special Fund of PetroChina and New Energy Branch(2023YQX10101)Petrochemical Joint Fund of Fund Committee(U20B6001)。
文摘Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output to 1925×108m3in 2020,making it the fourth largest gas-producing country in the world.Based on 1696 molecular components and carbon isotopic composition data of alkane gas in 70 large gas fields in China,the characteristics of carbon isotopic composition of alkane gas in large gas fields in China were obtained.The lightest and average values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become heavier with increasing carbon number,while the heaviest values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become lighter with increasing carbon number.Theδ^(13)C_(1)values of large gas fields in China range from-71.2‰to-11.4‰(specifically,from-71.2‰to-56.4‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-18.9‰for coal-derived gas,and from-35.6‰to-11.4‰for abiogenic gas).Based on these data,theδ^(13)C_(1)chart of large gas fields in China was plotted.Moreover,theδ^(13)C_(1)values of natural gas in China range from-107.1‰to-8.9‰,specifically,from-1071%o to-55.1‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-13.3‰for coal-derived gas,and from-36.2‰to-8.9‰for abiogenic gas.Based on these data,theδ^(13)C_(1)chart of natural gas in China was plotted.
文摘The marine shipping industry faces challenges to reduce engine exhaust emissions and greenhouse gases (GHGs) from ships, and in particular, carbon dioxide. International regulatory bodies such as the International Maritime Organization and National Environmental Agencies of many countries have issued rules and regulations to drastically reduce GHG and emissions emanating from marine sources. This study investigates the possibility of using natural gas and hydrogen as alternative fuels to diesel oil for marine gas turbines and uses a mathematical model to assess the effect of these alternative fuels on gas turbine thermodynamic performance. Results show that since natural gas is categorized as a hydrocarbon fuel, the thermodynamic performance of the gas turbine cycle using natural gas was close to that of the diesel case. However, the gas turbine thermal efficiency was found to be slightly lower for natural gas and hydrogen fuels compared to diesel fuel.
文摘This paper describes the numerical calculations of gaseous reaction flows in a model of gas turbine combustors. The profiles of hydrodynamic and thermodynamic patterns in a three-dimensional combustor model are obtained by solving the governing differential transport equations. The well-established numerical prediction algorithm SIMPLE, the modified k-ε turbulence model and k-ε-g turbulent diffusion flame model have been adopted in computations. The β function has been selected as probability density function. The effect of combustion process on flow patterns has been investigated. The calculated results have been verified by experiments. They are in remarkably good agreement.
文摘Typically, crude oil production in Nigeria always accompanied by surface production of associated gas. With little associated gas recovery facilities in place, majority of associated gas is continuously flared with few portions re-injected into the reservoir for enhance oil recovery (EOR). In addition to environmental hazards, wasting substantial amount of produced associated gas is deemed detrimental to a country currently generating less than 54% of its electric power requirement. Onsite power generation as one of the many means of utilization of associated gas has been conceived. Conversely, the availability and performance of the gas turbine engine for onsite associated gas utilization requires evaluation owing to variations in associated natural gas composition globally and the dependency of associated gas production on reservoirs and oil production activities. This paper presents an analytical investigation of gas turbine engine inspired by GE LMS100 frame engine for onsite utilization of associated gas in Nigeria. Gas turbine performance results are presented and performance parameters are compared against typical commercial natural gas grade.
基金Supported by the National Natural Science Foundation of China(50906040)the Nanjing University of Aeronautics and Astronautics Research Funding(NZ2012107,NS2010052)~~
文摘The characteristics of swirler flow field, including cold flow field and combustion flow field, in gas tur- bine combustor with two-stage swirler are studied by using particle image velocimetry (PIV). Velocity compo- nents, fluctuation velocity, Reynolds stress and recirculation zone length are obtained, respectively. Influences of geometric parameter of primary hole, arrangement of primary hole, inlet air temperature, first-stage swirler an- gle and fuel/air ratio on flow field are investigated, respectively. The experimental results reveal that the primary recirculation zone lengths of combustion flow field are shorter than those of cold flow field, and the primary reeir- culation zone lengths decrease with the increase of inlet air temperature and fuel/air ratio. The change of the geo- metric parameter of primary hole casts an important influence on the swirler flow field in two-stage swirler com- bustor.
基金Supported by the National Key R&D Project(2019YFC1805505)National Natural Science Foundation of China(42272188,42172149,U2244209)+2 种基金Science and Technology Special Project of China National Petroleum Corporation(2023YQX10101)Petrochemical Joint Fund Integration Project of National Natural Science Foundation of China(U20B6001)Shale Gas Academician Workstation Project of Guizhou Energy Industry Research Institute Co.,Ltd.([2021]45-2)。
文摘Based on an elaboration of the resource potential and annual production of tight sandstone gas and shale gas in the United States and China,this paper reviews the researches on the distribution of tight sandstone gas and shale gas reservoirs,and analyzes the distribution characteristics and genetic types of tight sandstone gas reservoirs.In the United States,the proportion of tight sandstone gas in the total gas production declined from 20%-35%in 2008 to about 8%in 2023,and the shale gas production was 8310×10^(8)m^(3)in 2023,about 80%of the total gas production,in contrast to the range of 5%-17%during 2000-2008.In China,the proportion of tight sandstone gas in the total gas production increased from 16%in 2010 to 28%or higher in 2023.China began to produce shale gas in 2012,with the production reaching 250×10^(8)m^(3)in 2023,about 11%of the total gas production of the country.The distribution of shale gas reservoirs is continuous.According to the fault presence,fault displacement and gas layer thickness,the continuous shale gas reservoirs can be divided into two types:continuity and intermittency.Most previous studies believed that both tight sandstone gas reservoirs and shale gas reservoirs are continuous,but this paper holds that the distribution of tight sandstone gas reservoirs is not continuous.According to the trap types,tight sandstone gas reservoirs can be divided into lithologic,anticlinal,and synclinal reservoirs.The tight sandstone gas is coal-derived in typical basins in China and Egypt,but oil-type gas in typical basins in the United States and Oman.
基金Project(2017YFB0903300)supported by the National Key R&D Program of ChinaProject(2016M601593)supported by the China Postdoctoral Science Foundation
文摘Due to the fact that the turbine outlet temperature of aeroderivative three-shaft gas turbine is low,the conventional combined cycle is not suitable for three-shaft gas turbines.However,the humid air turbine(HAT)cycle provides a new choice for aeroderivative gas turbine because the humidification process does not require high temperature.Existing HAT cycle plants are all based on single-shaft gas turbines due to their simple structures,therefore converting aeroderivative three-shaft gas turbine into HAT cycle still lacks sufficient research.This paper proposes a HAT cycle model on a basis of an aeroderivative three-shaft gas turbine.Detailed HAT cycle modelling of saturator,gas turbine and heat exchanger are carried out based on the modular modeling method.The models are verified by simulations on the aeroderivative three-shaft gas turbine.Simulation results show that the studied gas turbine with original size and characteristics could not reach the original turbine inlet temperature because of the introduction of water.However,the efficiency still increases by 0.16%when the HAT cycle runs at the designed power of the simple cycle.Furthermore,simulations considering turbine modifications show that the efficiency could be significantly improved.The results obtained in the paper can provide reference for design and analysis of HAT cycle based on multi-shaft gas turbine especially the aeroderivative gas turbine.
文摘Causes of scale deposition in flue gas turbine expander of FCCU were analyzed based on some aspects,including the types and operating conditions of flue gas turbines,properties and composition of feedstocks and catalysts,and operating conditions of the reactor and regenerator.Some countermeasures were proposed for preventing scale deposition in flue gas turbine of FCCU.
基金supported by the National Natural Science Foundation of China(42376221,42276083)Director Research Fund Project of Guangzhou Marine Geological Survey(2023GMGSJZJJ00030)+2 种基金National Key Research and Development Program of China(2021YFC2800901)Guangdong Major Project of Basic and Applied Basic Research(2020B030103003)the project of the China Geological Survey(DD20230064).
文摘Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates.
基金supported by the National Natural Science Foundation of China(Grant No.42072168)the National Key R&D Program of China(Grant No.2019YFC0605405)the Fundamental Research Funds for the Central Universities(Grant No.2023ZKPYDC07)。
文摘The different reservoirs in deep Songliao Basin have non-homogeneous lithologies and include multiple layers with a high content of hydrogen gas.The gas composition and stable isotope characteristics vary significantly,but the origin analysis of different gas types has previously been weak.Based on the geochemical parameters of gas samples from different depths and the analysis of geological settings,this research covers the diverse origins of natural gas in different strata.The gas components are mainly methane with a small amount of C_(2+),and non-hydrocarbon gases,including nitrogen(N_(2)),hydrogen(H_(2)),carbon dioxide(CO_(2)),and helium(He).At greater depth,the carbon isotope of methane becomes heavier,and the hydrogen isotope points to a lacustrine sedimentary environment.With increasing depth,the origins of N_(2)and CO_(2)change gradually from a mixture of organic and inorganic to inorganic.The origins of hydrogen gas are complex and include organic sources,water radiolysis,water-rock(Fe^(2+)-containing minerals)reactions,and mantle-derived.The shales of Denglouku and Shahezi Formations,as source rocks,provide the premise for generation and occurrence of organic gas.Furthermore,the deep faults and fluid activities in Basement Formation control the generation and migration of mantle-derived gas.The discovery of a high content of H_(2)in study area not only reveals the organic and inorganic association of natural-gas generation,but also provides a scientific basis for the exploration of deep hydrogen-rich gas.
文摘The authors propose a new closed cycle oxy-fuel gas turbine power plant that utilizes a nuclear heat generator. A pressurized water reactor (PWR) is designed to supply saturated steam to an oxy-fuel gas turbine for a specific power output increase The saturated steam from the reactor can have lower pressure and temperature than those of an existing PWR. In this study, the authors estimated plant performances from a heat balance model based on a conceptual design of a hybrid plant and calculated the generating costs of the proposed plant from the Japanese cost data of an existing PWR plant and an liquefied natural gas (LNG) combined cycle gas turbine plant. The generating efficiency of an oxy-fuel gas turbine plant without a nuclear steam generator is estimated to be less than 35%. Based on this efficiency, with a nuclear steam generator contributing to the power output of the proposed hybrid plant, the corresponding generating efficiency is estimated to be around 45%, even if the steam conditions are lower than in an existing PWR. The generating costs are 15-20% lower than those calculated from the weighted heat performances of both an oxy-fuel gas turbine plant without a nuclear steam generator and an existing PWR plant.
文摘The structure and aerodynamics performance of gas turbine inlet system is an important part of technology of gas turbine installed on naval vessels. The design and numerical simulations of gas turbine inlet system are conducted and reliable foundation for design and manufacture of marine gas turbine inlet system of high performance is provided. Numerical simulations and experiments of two inlet system models of gas turbine are conducted with satisfactory results and are of significance to the actual application of the inlet system.
文摘This paper briefs the configuration and performance of large size gas turbines and their composed combined cycle power plants designed and produced by four large renown gas turbine manufacturing firms in the world, providing reference for the relevant sectors and enterprises in importing advanced gas turbines and technologies.
基金supported by the National Natural Science Foundation of China(No.11375136).
文摘With the development of science and technology,the scale of industrial production continues to grow,and the types and quantities of gas raw materials used in industrial production and produced during the production process are also constantly increasing.These gases include flammable and explosive gases,and even contain toxic gases.Therefore,it is very important and necessary for gas sensors to detect and monitor these gases quickly and accurately.In recent years,a new two-dimensional material called MXene has attracted widespread attention in various applications.Their abundant surface functional groups and sites,excellent current conductivity,tunable surface chemistry,and outstanding stability make them promising for gas sensor applications.Since the birth of MXene materials,researchers have utilized the efficient and convenient solution etching preparation,high flexibility,and easily functionalize MXene with other materials to pre-pare composites for gas sensing.This has opened a new chapter in high-performance gas sensing materials and provided a new approach for advanced sensor research.However,previous reviews on MXene-based composite materials in gas sensing only focused on the performance of gas sensing,without systematically explaining the gas sensing mechanisms generated by different gases,as well as summarizing and predicting the advantages and disadvantages of MXene-based composite materials.This article reviews the latest progress in the application of MXene-based composite materials in gas sensing.Firstly,a brief summary was given of the commonly used methods for preparing gas sens-ing device structures,followed by an introduction to the key attributes of MXene related to gas sensing performance.This article focuses on the performance of MXene-based composite materials used for gas sensing,such as MXene/graphene,MXene/Metal oxide,MXene/Transition metal sulfides(TMDs),MXene/Metal-organic framework(MOF),MXene/Polymer.It summarizes the advantages and disadvantages of MXene com-posite materials with different composites and discusses the possible gas sensing mechanisms of MXene-based composite materials for different gases.Finally,future directions and inroads of MXenes-based composites in gas sensing are presented and discussed.
文摘In the mid-21st century,natural gas will enter its golden age,and the era of natural gas is arriving.This paper reviews the development stages of global natural gas industry and the enlightenment of American shale gas revolution,summarizes the development history and achievements of the natural gas industry in China,analyzes the status and challenges of natural gas in the green and low-carbon energy transition,and puts forward the natural gas industry development strategies under carbon neutral target in China.The natural gas industry in China has experienced three periods:start,growth,and leap forward.At present,China has become the fourth largest natural gas producer and third largest natural gas consumer in the world,and has made great achievements in natural gas exploration and development theory and technology,providing important support for the growth of production and reserves.China has set its goal of carbon neutrality to promote green and sustainable development,which brings opportunities and challenges for natural gas industry.Natural gas has significant low-carbon advantages,and gas-electric peak shaving boosts new energy development;the difficulty and cost of development are more prominent.For the national energy security and harmonious development between economy and ecology under the carbon neutral goal,based on the principle of"comprehensive planning,technological innovation,multi-energy complementarity,diversified integration,flexibility and efficiency,optimization and upgrading",the construction of the production-supplystorage-marketing system has to be improved so as to boost the development of the natural gas industry.First,it is necessary to strengthen efforts in the exploration and development of natural gas,making projects and arrangement in key exploration and development areas,meanwhile,it is urgent to make breakthroughs in key science theories and technologies,so as to increase reserve and production.Second,it should promote green and innovative development of the natural gas by developing new techniques,expanding new fields and integrating with new energy.Third,there is a demand to realize transformation and upgrading of the supply and demand structure of natural gas by strengthening the layout of pipeline gas,liquefied natural gas and the construction of underground gas storage,establishing reserve system for improving abilities of emergency response and adjustment,raising the proportion of natural gas in the primary energy consumption and contributing to the transformation of energy consumption structure,realizing low-carbon resources utilization and clean energy consumption.
基金Supported by the Prospective and Basic Research Project of PetroChina(2021DJ23)。
文摘In recent years,great breakthroughs have been made in the exploration and development of natural gas in deep coal-rock reservoirs in Junggar,Ordos and other basins in China.In view of the inconsistency between the industrial and academic circles on this new type of unconventional natural gas,this paper defines the concept of"coal-rock gas"on the basis of previous studies,and systematically analyzes its characteristics of occurrence state,transport and storage form,differential accumulation,and development law.Coal-rock gas,geologically unlike coalbed methane in the traditional sense,occurs in both free and adsorbed states,with free state in abundance.It is generated and stored in the same set of rocks through short distance migration,occasionally with the accumulation from other sources.Moreover,coal rock develops cleat fractures,and the free gas accumulates differentially.The coal-rock gas reservoirs deeper than 2000 m are high in pressure,temperature,gas content,gas saturation,and free-gas content.In terms of development,similar to shale gas and tight gas,coal-rock gas can be exploited by natural formation energy after the reservoirs connectivity is improved artificially,that is,the adsorbed gas is desorbed due to pressure drop after the high-potential free gas is recovered,so that the free gas and adsorbed gas are produced in succession for a long term without water drainage for pressure drop.According to buried depth,coal rank,pressure coefficient,reserves scale,reserves abundance and gas well production,the classification criteria and reserves/resources estimation method of coal-rock gas are presented.It is preliminarily estimated that the coal-rock gas in place deeper than 2000 m in China exceeds 30×10^(12)m^(3),indicating an important strategic resource for the country.The Ordos,Sichuan,Junggar and Bohai Bay basins are favorable areas for large-scale enrichment of coal-rock gas.The paper summarizes the technical and management challenges and points out the research directions,laying a foundation for the management,exploration,and development of coal-rock gas in China.