A new method to identify flow regime in two-phase flow was presented, based on signal processing of differential pressure using Hilbert Huang transform (HHT). Signals obtained from a Venturi meter were decomposed in...A new method to identify flow regime in two-phase flow was presented, based on signal processing of differential pressure using Hilbert Huang transform (HHT). Signals obtained from a Venturi meter were decomposed into different intrinsic mode functions (IMFs) with HHT, then the energy fraction of each intrinsic mode and the mean value of residual function were calculated, from which the rules of flow regime identification were summarized. Experiments were carried out on two-phase flow in the horizontal tubes with 50mm and 40mm inner diameter, while water flowrate was in the range of 1.3m^3.h^-1 to 10.5m^3.h^-1, oil flowrate was from 4.2m^3.h^-1 to 7.0m^3.h^-1 and gas flowrate from 0 to 15m^3.h^-1. The results show that the proposed rules have high precision for single phase, bubbly, and slug, plug flow regirne identification, which are independent of not only properties of two-phase fluid. In addition, the method can meet the need of industrial application because of its simple calculation.展开更多
The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to ide...The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to identify flow regime in two-phase flow was presented. Firstly, gas-liquid two-phase flow images including bub- bly flow, plug flow, slug flow, stratified flow, wavy flow, annular flow and mist flow were captured by digital high speed video systems in the horizontal tube. The image moment invariants and gray level co-occurrence matrix texture features were extracted using image processing techniques. To improve the performance of a multiple classifier system, the rough sets theory was used for reducing the inessential factors. Furthermore, the support vector machine was trained by using these eigenvectors to reduce the dimension as flow regime samples, and the flow regime intelligent identification was realized. The test results showed that image features which were reduced with the rough sets theory could excellently reflect the difference between seven typical flow regimes, and successful training the support vector machine could quickly and accurately identify seven typical flow regimes of gas-liquid two-phase flow in the horizontal tube. Image multi-feature fusion method provided a new way to identify the gas-liquid two-phase flow, and achieved higher identification ability than that of single characteristic. The overall identification accuracy was 100%, and an estimate of the image processing time was 8 ms for online flow regime identification.展开更多
Oil-air two-phase flow measurement was investigated with a Venturi and void fraction meters in this work. This paper proposes a new flow rate measurement correlation in which the effect of the velocity ratio between g...Oil-air two-phase flow measurement was investigated with a Venturi and void fraction meters in this work. This paper proposes a new flow rate measurement correlation in which the effect of the velocity ratio between gas and liquid was considered. With the pressure drop across the Venturi and the void fraction that was measured by electrical capacitance tomography apparatus, both mixture flow rate and oil flow rate could be obtained by the correlation. Experiments included bubble-, slug-, wave and annular flow with the void fraction ranging from 15% to 83%, the oil flow rate ranging from 0.97 kg/s to 1.78 kg/s, the gas flow rate ranging up to 0.018 kg/s and quality ranging nearly up to 2.0%. The root-mean-square errors of mixture mass flow rate and that of oil mass flow rate were less than 5%. Furthermore, coefficients of the correlation were modified based on flow regimes, with the results showing reduced root-mean-square errors.展开更多
The flow patterns and the void fraction related to a gas-liquid two-phase flow in a small channel are experimentally studied.The test channel is a transparent quartz glass circular channel with an inner diameter of 6....The flow patterns and the void fraction related to a gas-liquid two-phase flow in a small channel are experimentally studied.The test channel is a transparent quartz glass circular channel with an inner diameter of 6.68 mm.The working fluids are air and water and their superficial velocities range from 0.014 to 8.127 m/s and from 0.0238 to 0.556 m/s,respectively.The void fraction is determined using the flow pattern images captured by a high-speed camera,while quick closing valves are used for verification.Four flow patterns are analyzed in experiments:slug flow,bubbly flow,annular flow and stratified flow.For intermittent flows(bubbly flow and slug flow),the cross-sectional void fraction is in a borderline condition while its probability distribution function(PDF)image displays a bimodal structure.For continuous flows(annular flow and stratified flow)the cross-sectional void fraction behaves as a fluctuating continuous curve while the(PDF)image displays a single peak structure.The volumetric void fraction data are also compared with available predictive formulas,and the results show that the agreement is very good.An effort is also provided to improve the so-called Gregory and Scott model using the available data.展开更多
While experimental designs developed in recent decades have contributed to research on dynamic nonequilibrium effects in transient two-phase flow in porous media,this problem has been seldom investigated using direct ...While experimental designs developed in recent decades have contributed to research on dynamic nonequilibrium effects in transient two-phase flow in porous media,this problem has been seldom investigated using direct numerical simulation(DNS).Only a few studies have sought to numerically solve Navier—Stokes equations with level-set(LS)or volume-of-fluid(VoF)methods,each of which has constraints in terms of meniscus dynamics for various flow velocities in the control volume(CV)domain.The Shan—Chen multiphase multicomponent lattice Boltzmann method(SC-LBM)has a fundamental mechanism to separate immiscible fluid phases in the density domain without these limitations.Therefore,this study applied it to explore two-phase displacement in a single representative elementary volume(REV)of two-dimensional(2D)porous media.As a continuation of a previous investigation into one-step inflow/outflow in 2D porous media,this work seeks to identify dynamic nonequilibrium effects on capillary pressure—saturation relationship(P_(c)—S)for quasi-steady-state flow and multistep inflow/outflow under various pressure boundary conditions.The simulation outcomes show that P_(c),S and specific interfacial area(a_(nw))had multistep-wise dynamic effects corresponding to the multistep-wise pressure boundary conditions.With finer adjustments to the increase in pressure over more steps,dynamic nonequilibrium effects were significantly alleviated and even finally disappeared to achieve quasisteady-state inflow/outflow conditions.Furthermore,triangular wave-formed pressure boundary conditions were applied in different periods to investigate dynamic nonequilibrium effects for hysteretical Pc—S.The results showed overshoot and undershoot of P_(c)to S in loops of the nonequilibrium hysteresis.In addition,the flow regimes of multistep-wise dynamic effects were analyzed in terms of Reynolds and capillary numbers(Re and Ca).The analysis of REV-scale flow regimes showed higher Re(1<Re<10)for more significant dynamic nonequilibrium effects.This indicates that inertia is critical for transient twophase flow in porous media under dynamic nonequilibrium conditions.展开更多
The influence of a surfactant on the two-phase flow regime and the pressure drop in upward inclined pipes is investigated for various gas/liquid flow rates.The air/water and air/100 ppm sodium dodecyl sulphate aqueous...The influence of a surfactant on the two-phase flow regime and the pressure drop in upward inclined pipes is investigated for various gas/liquid flow rates.The air/water and air/100 ppm sodium dodecyl sulphate aqueous solution are used as the working fluids.The influence of the surfactant on the two-phase flow regime in upward inclined pipes is investigated using the electrical tomographic technique.For 0o,2.5o and 5o pipe inclinations,the surfactant has obvious effect on the transition from the stratified wavy flow to the annular flow,and the range of the stratified smooth flow regime is also extended to higher gas velocities.For 10o pipe inclination,no stratified flow regime is observed in the air/water flow.In the air/surfactant solution system,however,the stratified flow regime can be found in the range of and.For all inclination angles,the changes of the pressure gradient characteristics are accompanied with the flow pattern transitions.Adding surfactant in a two-phase flow would reduce the pressure gradient significantly in the slug flow and annular flow regimes.In the annular flow regime,the pressure gradient gradually becomes free of the influence of the upward inclined angle,and is only dependent on the property of the two-phase flow.展开更多
To accurately measure and evaluate the oil-water production profile of horizontal wells, a dynamic measurement experiment of oil-water two-phase flow in horizontal wells and numerical simulation were combined to estab...To accurately measure and evaluate the oil-water production profile of horizontal wells, a dynamic measurement experiment of oil-water two-phase flow in horizontal wells and numerical simulation were combined to establish a method for measuring the partial phase flow rate of oil-water two-phase stratified flow in horizontal wells. An experimental work was performed in horizontal oil-water two-phase flow simulation well using combination production logging tool including mini-capacitance sensor and mini-spinner. The combination tool provides a recording of holdup and velocity profiles at five different heights of the borehole cross-section. The effect of total flow rate and water-cut on the response of spinner and capacitive sensor at five measured positions were investigated. The capacitance water holdup interpolation imaging algorithm was used to determine the local fluid property and oil-water interface height, and the measured local fluid speed was combined with the numerical simulation result to establish an optimal calculation model for obtaining the partial phase flow rate of the oil-water two-phase stratified flow in the horizontal well. The calculated flow rates of five measured points are basically consistent with the experimental data, the total flow rate and water holdup from calculation are in agreement with the set values in the experiment too, suggesting that the method has high accuracy.展开更多
The knowledge of flow regimes is very important in the study of a two phase flow system. A new flow regime identification method based on a Probability Density Function (PDF) and a neural network is proposed in this...The knowledge of flow regimes is very important in the study of a two phase flow system. A new flow regime identification method based on a Probability Density Function (PDF) and a neural network is proposed in this paper. The instantaneous differential pressure signals of a horizontal flow were acquired with a differential pressure sensor. The characters of differential pressure signals for different flow regimes are analyzed with the PDF. Then, four characteristic parameters of the PDF curves are defined, the peak number (K 1 ), the maximum peak value (K 2 ), the peak position (K 3 ) and the PDF variance (K 4 ). The characteristic vectors which consist of the four characteristic parameters as the input vectors train the neural network to classify the flow regimes. Experimental results show that this novel method for identifying air water two phase flow regimes has the advantages with a high accuracy and a fast response. The results clearly demonstrate that this new method could provide an accurate identification of flow regimes.展开更多
Two-phase flow is modeled by considering interactions between partocles and their surrounding fluid at three scales: micro-scale of particle size, meso-scale of cluster size, and macro-scale for the overall particulat...Two-phase flow is modeled by considering interactions between partocles and their surrounding fluid at three scales: micro-scale of particle size, meso-scale of cluster size, and macro-scale for the overall particulate system consisting of clusters carried by the surrounding dilute phase.A further constraint has been found necessary to describe the stability of the twophase flow: the total energy always seeks a minimum for the dynamics of such particulate systems.The modeling can be used to explain numerous phenomena in particle-fluid flow, such as flow regime transitions and the heterogeneity of the two-phase system. It not only reflects the physical nature of the particle-fluid flow, but also makes possible quantitative description for both gas-solid (G/S) and liquid-solid (L/S) systems.展开更多
This paper presents an experimental study of the physical characteristic effects of large particles on hydraulic transport in a horizontal pipe.The particles are spherical and are large with respect to the diameter of...This paper presents an experimental study of the physical characteristic effects of large particles on hydraulic transport in a horizontal pipe.The particles are spherical and are large with respect to the diameter of the pipe(8%,10%,16% and 25%).Experiments were done to test the important parameters in solid transport(pressure,velocity,etc.).As a result,the relationship between the pressure gradient forces and the mixture velocity was substantially different from the pure liquid flow.However,in a single-phase flow a monotonous behavior of the pressure drop curve is observed,and the curve of the solid particle flow attains its minimum at the critical velocity.The regimes are characterized with differential pressure measurements and visualizations.展开更多
基金Supported by National High-tech Research and Development Foundation of China (No.2001AA413210).
文摘A new method to identify flow regime in two-phase flow was presented, based on signal processing of differential pressure using Hilbert Huang transform (HHT). Signals obtained from a Venturi meter were decomposed into different intrinsic mode functions (IMFs) with HHT, then the energy fraction of each intrinsic mode and the mean value of residual function were calculated, from which the rules of flow regime identification were summarized. Experiments were carried out on two-phase flow in the horizontal tubes with 50mm and 40mm inner diameter, while water flowrate was in the range of 1.3m^3.h^-1 to 10.5m^3.h^-1, oil flowrate was from 4.2m^3.h^-1 to 7.0m^3.h^-1 and gas flowrate from 0 to 15m^3.h^-1. The results show that the proposed rules have high precision for single phase, bubbly, and slug, plug flow regirne identification, which are independent of not only properties of two-phase fluid. In addition, the method can meet the need of industrial application because of its simple calculation.
基金Supported by the National Natural Science Foundation of China (50706006) and the Science and Technology Development Program of Jilin Province (20040513).
文摘The knowledge of flow regime is very important for quantifying the pressure drop, the stability and safety of two-phase flow systems. Based on image multi-feature fusion and support vector machine, a new method to identify flow regime in two-phase flow was presented. Firstly, gas-liquid two-phase flow images including bub- bly flow, plug flow, slug flow, stratified flow, wavy flow, annular flow and mist flow were captured by digital high speed video systems in the horizontal tube. The image moment invariants and gray level co-occurrence matrix texture features were extracted using image processing techniques. To improve the performance of a multiple classifier system, the rough sets theory was used for reducing the inessential factors. Furthermore, the support vector machine was trained by using these eigenvectors to reduce the dimension as flow regime samples, and the flow regime intelligent identification was realized. The test results showed that image features which were reduced with the rough sets theory could excellently reflect the difference between seven typical flow regimes, and successful training the support vector machine could quickly and accurately identify seven typical flow regimes of gas-liquid two-phase flow in the horizontal tube. Image multi-feature fusion method provided a new way to identify the gas-liquid two-phase flow, and achieved higher identification ability than that of single characteristic. The overall identification accuracy was 100%, and an estimate of the image processing time was 8 ms for online flow regime identification.
基金Project (No. 2001AA413210) supported by the Hi-Tech Researchand Development Program (863) of China
文摘Oil-air two-phase flow measurement was investigated with a Venturi and void fraction meters in this work. This paper proposes a new flow rate measurement correlation in which the effect of the velocity ratio between gas and liquid was considered. With the pressure drop across the Venturi and the void fraction that was measured by electrical capacitance tomography apparatus, both mixture flow rate and oil flow rate could be obtained by the correlation. Experiments included bubble-, slug-, wave and annular flow with the void fraction ranging from 15% to 83%, the oil flow rate ranging from 0.97 kg/s to 1.78 kg/s, the gas flow rate ranging up to 0.018 kg/s and quality ranging nearly up to 2.0%. The root-mean-square errors of mixture mass flow rate and that of oil mass flow rate were less than 5%. Furthermore, coefficients of the correlation were modified based on flow regimes, with the results showing reduced root-mean-square errors.
基金This work was supported by the Guangdong Basic and Applied Basic Research Foundation(2019A1515111116)Key R&D Program of Shandong Province(Nos.2019GSF109051,2019GGX101030)+1 种基金Shandong Provincial Postdoctoral Innovation Project(No.201902002)Foundation of Shandong University for Young Scholar’s Future Plans.
文摘The flow patterns and the void fraction related to a gas-liquid two-phase flow in a small channel are experimentally studied.The test channel is a transparent quartz glass circular channel with an inner diameter of 6.68 mm.The working fluids are air and water and their superficial velocities range from 0.014 to 8.127 m/s and from 0.0238 to 0.556 m/s,respectively.The void fraction is determined using the flow pattern images captured by a high-speed camera,while quick closing valves are used for verification.Four flow patterns are analyzed in experiments:slug flow,bubbly flow,annular flow and stratified flow.For intermittent flows(bubbly flow and slug flow),the cross-sectional void fraction is in a borderline condition while its probability distribution function(PDF)image displays a bimodal structure.For continuous flows(annular flow and stratified flow)the cross-sectional void fraction behaves as a fluctuating continuous curve while the(PDF)image displays a single peak structure.The volumetric void fraction data are also compared with available predictive formulas,and the results show that the agreement is very good.An effort is also provided to improve the so-called Gregory and Scott model using the available data.
基金University of Queensland International Scholarship(UQI)for its support(Grant No.42719692)。
文摘While experimental designs developed in recent decades have contributed to research on dynamic nonequilibrium effects in transient two-phase flow in porous media,this problem has been seldom investigated using direct numerical simulation(DNS).Only a few studies have sought to numerically solve Navier—Stokes equations with level-set(LS)or volume-of-fluid(VoF)methods,each of which has constraints in terms of meniscus dynamics for various flow velocities in the control volume(CV)domain.The Shan—Chen multiphase multicomponent lattice Boltzmann method(SC-LBM)has a fundamental mechanism to separate immiscible fluid phases in the density domain without these limitations.Therefore,this study applied it to explore two-phase displacement in a single representative elementary volume(REV)of two-dimensional(2D)porous media.As a continuation of a previous investigation into one-step inflow/outflow in 2D porous media,this work seeks to identify dynamic nonequilibrium effects on capillary pressure—saturation relationship(P_(c)—S)for quasi-steady-state flow and multistep inflow/outflow under various pressure boundary conditions.The simulation outcomes show that P_(c),S and specific interfacial area(a_(nw))had multistep-wise dynamic effects corresponding to the multistep-wise pressure boundary conditions.With finer adjustments to the increase in pressure over more steps,dynamic nonequilibrium effects were significantly alleviated and even finally disappeared to achieve quasisteady-state inflow/outflow conditions.Furthermore,triangular wave-formed pressure boundary conditions were applied in different periods to investigate dynamic nonequilibrium effects for hysteretical Pc—S.The results showed overshoot and undershoot of P_(c)to S in loops of the nonequilibrium hysteresis.In addition,the flow regimes of multistep-wise dynamic effects were analyzed in terms of Reynolds and capillary numbers(Re and Ca).The analysis of REV-scale flow regimes showed higher Re(1<Re<10)for more significant dynamic nonequilibrium effects.This indicates that inertia is critical for transient twophase flow in porous media under dynamic nonequilibrium conditions.
基金supported by the National Natural Science Foundation of China(Grant No.51176002)the National Key Basic Research Program of China(973Program,Grant No.2011CB710704)
文摘The influence of a surfactant on the two-phase flow regime and the pressure drop in upward inclined pipes is investigated for various gas/liquid flow rates.The air/water and air/100 ppm sodium dodecyl sulphate aqueous solution are used as the working fluids.The influence of the surfactant on the two-phase flow regime in upward inclined pipes is investigated using the electrical tomographic technique.For 0o,2.5o and 5o pipe inclinations,the surfactant has obvious effect on the transition from the stratified wavy flow to the annular flow,and the range of the stratified smooth flow regime is also extended to higher gas velocities.For 10o pipe inclination,no stratified flow regime is observed in the air/water flow.In the air/surfactant solution system,however,the stratified flow regime can be found in the range of and.For all inclination angles,the changes of the pressure gradient characteristics are accompanied with the flow pattern transitions.Adding surfactant in a two-phase flow would reduce the pressure gradient significantly in the slug flow and annular flow regimes.In the annular flow regime,the pressure gradient gradually becomes free of the influence of the upward inclined angle,and is only dependent on the property of the two-phase flow.
基金Supported by National Natural Science Foundation of China(41474115)Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University)Ministry of Education of China(No K2018-02)Educational Commission of Hubei Province of China(D20141302)
文摘To accurately measure and evaluate the oil-water production profile of horizontal wells, a dynamic measurement experiment of oil-water two-phase flow in horizontal wells and numerical simulation were combined to establish a method for measuring the partial phase flow rate of oil-water two-phase stratified flow in horizontal wells. An experimental work was performed in horizontal oil-water two-phase flow simulation well using combination production logging tool including mini-capacitance sensor and mini-spinner. The combination tool provides a recording of holdup and velocity profiles at five different heights of the borehole cross-section. The effect of total flow rate and water-cut on the response of spinner and capacitive sensor at five measured positions were investigated. The capacitance water holdup interpolation imaging algorithm was used to determine the local fluid property and oil-water interface height, and the measured local fluid speed was combined with the numerical simulation result to establish an optimal calculation model for obtaining the partial phase flow rate of the oil-water two-phase stratified flow in the horizontal well. The calculated flow rates of five measured points are basically consistent with the experimental data, the total flow rate and water holdup from calculation are in agreement with the set values in the experiment too, suggesting that the method has high accuracy.
基金Project supported by the National High Technology and Research Development Program Special Fund of China (GrantNo: 2002AA616050).
文摘The knowledge of flow regimes is very important in the study of a two phase flow system. A new flow regime identification method based on a Probability Density Function (PDF) and a neural network is proposed in this paper. The instantaneous differential pressure signals of a horizontal flow were acquired with a differential pressure sensor. The characters of differential pressure signals for different flow regimes are analyzed with the PDF. Then, four characteristic parameters of the PDF curves are defined, the peak number (K 1 ), the maximum peak value (K 2 ), the peak position (K 3 ) and the PDF variance (K 4 ). The characteristic vectors which consist of the four characteristic parameters as the input vectors train the neural network to classify the flow regimes. Experimental results show that this novel method for identifying air water two phase flow regimes has the advantages with a high accuracy and a fast response. The results clearly demonstrate that this new method could provide an accurate identification of flow regimes.
文摘Two-phase flow is modeled by considering interactions between partocles and their surrounding fluid at three scales: micro-scale of particle size, meso-scale of cluster size, and macro-scale for the overall particulate system consisting of clusters carried by the surrounding dilute phase.A further constraint has been found necessary to describe the stability of the twophase flow: the total energy always seeks a minimum for the dynamics of such particulate systems.The modeling can be used to explain numerous phenomena in particle-fluid flow, such as flow regime transitions and the heterogeneity of the two-phase system. It not only reflects the physical nature of the particle-fluid flow, but also makes possible quantitative description for both gas-solid (G/S) and liquid-solid (L/S) systems.
基金the Dyn Fluid Laboratory at Arts et Métiers Paris Tech
文摘This paper presents an experimental study of the physical characteristic effects of large particles on hydraulic transport in a horizontal pipe.The particles are spherical and are large with respect to the diameter of the pipe(8%,10%,16% and 25%).Experiments were done to test the important parameters in solid transport(pressure,velocity,etc.).As a result,the relationship between the pressure gradient forces and the mixture velocity was substantially different from the pure liquid flow.However,in a single-phase flow a monotonous behavior of the pressure drop curve is observed,and the curve of the solid particle flow attains its minimum at the critical velocity.The regimes are characterized with differential pressure measurements and visualizations.