期刊文献+
共找到187篇文章
< 1 2 10 >
每页显示 20 50 100
Degradation of ciprofloxacin hydrochloride in a multiphase mixed system by subaquatic gas-liquid discharge plasma
1
作者 Mengyu WANG Jianping LIANG +5 位作者 Ke LU Zikai ZHOU Qinghua LIU Hao YUAN Wenchun WANG Dezheng YANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第11期144-151,共8页
In recent years, antibiotic pollution has become a serious threat to human health. In this study, a gas-liquid discharge plasma is developed to degrade ciprofloxacin hydrochloride in a multiphase mixed system containi... In recent years, antibiotic pollution has become a serious threat to human health. In this study, a gas-liquid discharge plasma is developed to degrade ciprofloxacin hydrochloride in a multiphase mixed system containing inorganic and organic impurities. The discharge characteristics are analyzed by diagnosing the applied voltage and discharge current waveforms, as well as the optical emission spectra. The work investigates how degradation efficiency is affected by applied voltage, gas flow rate, treatment time, initial concentration as well as the addition of γ-Al_(2)O_(3) pellets and peanut straw. After 70 min, the degradation efficiency of ciprofloxacin hydrochloride in the multiphase mixed system reached 99.6%. Its removal efficiency increases as the initial concentration decreases and the applied voltage increases. Besides, there is still a good degradation efficiency of ciprofloxacin hydrochloride with the addition of peanut straw.The degradation mechanism of ciprofloxacin hydrochloride is investigated through the analysis of degraded intermediates and reactive species. 展开更多
关键词 antibiotic gas-liquid discharge multiphase mixed system ciprofloxacin hydrochloride degradation
下载PDF
A Novel Method for Determining the Void Fraction in Gas-Liquid Multi-Phase Systems Using a Dynamic Conductivity Probe
2
作者 Xiaochu Luo Xiaobing Qi +3 位作者 Zhao Luo Zhonghao Li Ruiquan Liao Xingkai Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1233-1249,共17页
Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel... Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel approach for determining the void fraction based on a reciprocating dynamic conductivity probe used to measure the liquid film thickness under forced annular-flow conditions.The measurement system comprises a cyclone,a conductivity probe,a probe reciprocating device,and a data acquisition and processing system.This method ensures that the flow pattern is adjusted to a forced annular flow,thereby minimizing the influence of complex and variable gas-liquid flow patterns on the measurement results;Moreover,it determines the liquid film thickness solely according to circuit connectivity rather than specific conductivity values,thereby mitigating the impact of salinity.The reliability of the measurement system is demonstrated through laboratory experiments.The experimental results indicate that,in a range of gas phase superficial velocities 5–20 m/s and liquid phase superficial velocities 0.079–0.48 m/s,the maximum measurement deviation for the void fraction is 4.23%. 展开更多
关键词 Forced annular flow dynamic conductivity probe void fraction gas-liquid flow liquid film thickness
下载PDF
A New Device for Gas-Liquid Flow Measurements Relying on Forced Annular Flow
3
作者 Tiantian Yu Youping Lv +5 位作者 Hao Zhong Ming Liu Pingyuan Gai Zeju Jiang Peng Zhang Xingkai Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1759-1772,共14页
A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The sw... A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow. 展开更多
关键词 gas-liquid flow measurement blocking flowmeter measurement model pressure fluctuations numerical simulation experimental control
下载PDF
Enhanced degradation of tetracycline by gas-liquid discharge plasma coupled with g-C_(3)N_(4)/TiO_(2)
4
作者 Zhenhai WANG Zikai ZHOU +1 位作者 Sen WANG Zhi FANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第9期69-78,共10页
Plasma-catalysis is considered as one of the most promising technologies for antibiotic degradation in water.In the plasma-catalytic system,one of the factors affecting the degradation effect is the performance of the... Plasma-catalysis is considered as one of the most promising technologies for antibiotic degradation in water.In the plasma-catalytic system,one of the factors affecting the degradation effect is the performance of the photocatalyst,which is usually restricted by the rapid recombination of electrons and holes as well as narrow light absorption range.In this research,a photocatalyst g-C_(3)N_(4)/TiO_(2) was prepared and coupled with gas-liquid discharge(GLD)to degrade tetracycline(TC).The performance was examined,and the degradation pathways and mechanisms were studied.Results show that a 90%degradation rate is achieved in the GLD with g-C_(3)N_(4)/TiO_(2) over a 10 min treatment.Increasing the pulse voltage is conducive to increasing the degradation rate,whereas the addition of excessive g-C_(3)N_(4)/TiO_(2) tends to precipitate agglomerates,resulting in a poor degradation efficiency.The redox properties of the g-C_(3)N_(4)/TiO_(2) surface promote the generation of oxidizing active species(H2O2,O3)in solution.Radical quenching experiments showed that·OH,hole(h^(+)),play important roles in the TC degradation by the discharge with g-C_(3)N_(4)/TiO_(2).Two potential degradation pathways were proposed based on the intermediates.The toxicity of tetracycline was reduced by treatment in the system.Furthermore,the g-C_(3)N_(4)/TiO_(2) composites exhibited excellent recoverability and stability. 展开更多
关键词 gas-liquid discharge PLASMA-CATALYSIS g-C_(3)N_(4)/TiO_(2) TC degradation
下载PDF
Modeling and simulation of material distribution in the sequential co-injection molding process 被引量:1
5
作者 Qingsheng Liu Youqiong Liu Chuntao Jiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期507-520,共14页
In co-injection molding,the properties and distribution of polymers will affect the application of products.The focus of this work is to investigate the effect of molding parameters on the skin/core material distribut... In co-injection molding,the properties and distribution of polymers will affect the application of products.The focus of this work is to investigate the effect of molding parameters on the skin/core material distribution based on three-dimensional(3-D)flow and heat transfer model for the sequential coinjection molding process,and the flow behaviors and material distributions of skin and core melts inside a slightly complex cavity(dog-bone shaped cavity)are predicted numerically.The governing equations of fluids in mold are solved by finite volume method and Semi-Implicit Method for Pressure Linked Equations(SIMPLE)algorithm on collocated meshes,and the domain extension technique is employed in numerical method for this cavity to assure that the numerical algorithm is implemented successfully.The level set transport equation which is used to trace the free surfaces in co-injection molding is discretized and solved by the 5 th-order Weighted Essentially Non-Oscillatory(WENO)scheme in space and 3 rd-order Total Variation Diminishing Runger-Kutta(TVD-R-K)scheme in time respectively.Numerical simulations are conducted under various volume fraction of core melt,skin and core melt temperatures,skin and core melt flow rates.The predicted results of material distribution in length,width and thickness directions are in close agreement with the experimental results,which indicate that volume fraction of core melt,core melt temperature and core melt flow rate are principal factors that have a significant influence on material distribution.Numerical results demonstrate the effectiveness of the 3-D model and the corresponding numerical methods in this work,which can be used to predict the melt flow behaviors and material distribution in the process of sequential co-injection molding. 展开更多
关键词 co-injection molding Finite volume method SIMULATION Level set Material distribution
下载PDF
Effects of channel wall wettability on gas-liquid dynamics mass transfer under Taylor flow in a serpentine microchannel 被引量:1
6
作者 Xuancheng Liu Hongye Li +4 位作者 Yibing Song Nan Jin Qingqiang Wang Xunli Zhang Yuchao Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期192-201,共10页
The wall wettability of microchannels plays an important role in the gas-liquid mass transfer dynamics under Taylor flow.In this study,we regulated the contact angle of the wall surface through surface chemical grafti... The wall wettability of microchannels plays an important role in the gas-liquid mass transfer dynamics under Taylor flow.In this study,we regulated the contact angle of the wall surface through surface chemical grafting polymerization under controlled experimental conditions.The dynamic changes of CO_(2)bubbles flowing along the microchannel were captured by a high-speed video camera mounted on a stereo microscope,whilst a unit cell model was employed to theoretically investigate the gas-liquid mass transfer dynamics.We quantitatively characterized the effects of wall wettability,specifically the contact angle,on the formation mechanism of gas bubbles and mass transfer process experimentally.The results revealed that the gas bubble velocity,the overall volumetric liquid phase mass transfer coefficients(kLa),and the specific interfacial area(a)all increased with the increase of the contact angle.Conversely,gas bubble length and leakage flow decreased.Furthermore,we proposed a new modified model to predict the gas-liquid two-phase mass transfer performance,based on van Baten’s and Yao’s models.Our proposed model was observed to agree reasonably well with experimental observations. 展开更多
关键词 MICROREACTOR Microchannels Mass transfer WETTABILITY Taylor flow gas-liquid two-phase
下载PDF
Sustainable nitrogen fixation by bubble discharge plasma:Performance optimization and mechanism
7
作者 Yuankun Ye Xiaoyang Wei +2 位作者 Li Zhang Sen Wang Zhi Fang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期692-701,共10页
Sustainable nitrogen fixation driven by renewable energy sources under mild conditions has been widely sought to replace the industrial Haber-Bosch process.The fixation of nitrogen in the form of NO_(x)^(-)and NH_4^(+... Sustainable nitrogen fixation driven by renewable energy sources under mild conditions has been widely sought to replace the industrial Haber-Bosch process.The fixation of nitrogen in the form of NO_(x)^(-)and NH_4^(+)into aqueous solutions using electricity-driven gas-liquid discharge plasma is considered a promising prescription.In this paper,a scalable bubble discharge excited by nanosecond pulse power is employed for nitrogen fixation in the liquid phase.The nitrogen fixation performance and the mechanisms are analyzed by varying the power supply parameters,working gas flow rate and composition.The results show that an increase in voltage and frequency can result in an enhanced NO_(3)^(-)yield.Increases in the gas flow rate can result in inadequate activation of the working gas,which together with more inefficient mass transfer efficiencies can reduce the yield.The addition of O_(2) effectively elevates NO_(3)^(-)production while simultaneously inhibiting NH_4^(+) production.The addition of H_(2)O vapor increases the production of OH and H,thereby promoting the generation of reactive nitrogen and enhancing the yield of nitrogen fixation.However,the excessive addition of O_(2) and H_(2)O vapor results in negative effect on the yield of nitrogen fixation,due to the significant weakening of the discharge intensity.The optimal nitrogen fixation yield was up to 16.5 μmol/min,while the optimal energy consumption was approximately 21.3 MJ/mol in this study.Finally,the mechanism related to nitrogen fixation is discussed through the optical emission spectral(OES) information in conjunction with the simulation of energy loss paths in the plasma by BOLSIG+.The work advances knowledge of the effect of parameter variations on nitrogen fixation by gas-liquid discharge for higher yield and energy production. 展开更多
关键词 Nitrogen fixation gas-liquid discharge plasma Bubble discharge MECHANISM
下载PDF
Evaluation of frictional pressure drop correlations for air-water and air-oil two-phase flow in pipeline-riser system
8
作者 Nai-Liang Li Bin Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1305-1319,共15页
Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to ... Accurate prediction of the frictional pressure drop is important for the design and operation of subsea oil and gas transporting system considering the length of the pipeline. The applicability of the correlations to pipeline-riser flow needs evaluation since the flow condition in pipeline-riser is quite different from the original data where they were derived from. In the present study, a comprehensive evaluation of 24prevailing correlation in predicting frictional pressure drop is carried out based on experimentally measured data of air-water and air-oil two-phase flows in pipeline-riser. Experiments are performed in a system having different configuration of pipeline-riser with the inclination of the downcomer varied from-2°to-5°to investigated the effect of the elbow on the frictional pressure drop in the riser. The inlet gas velocity ranges from 0.03 to 6.2 m/s, and liquid velocity varies from 0.02 to 1.3 m/s. A total of885 experimental data points including 782 on air-water flows and 103 on air-oil flows are obtained and used to access the prediction ability of the correlations. Comparison of the predicted results with the measured data indicate that a majority of the investigated correlations under-predict the pressure drop on severe slugging. The result of this study highlights the requirement of new method considering the effect of pipe layout on the frictional pressure drop. 展开更多
关键词 Frictional pressure drop Pipeline-riser gas-liquid two-phase flow Severe slugging CORRELATION
下载PDF
A Numerical Study on the Effect of the Backflow Hole Position on the Performances of a Self-Priming Pump
9
作者 Dongwei Wang Lijian Cao +1 位作者 Weidong Wang Jiajun Hu 《Fluid Dynamics & Materials Processing》 EI 2024年第5期1103-1122,共20页
A self-priming pump is a centrifugal pump that has the ability to prime itself. Typically, its performance dependson the configuration of its reflux hole. In this study, the ANSYS FLUENT software is used to investigat... A self-priming pump is a centrifugal pump that has the ability to prime itself. Typically, its performance dependson the configuration of its reflux hole. In this study, the ANSYS FLUENT software is used to investigate the effectsof three different radial positions of the reflux hole on gas-liquid two-phase distribution, pressure pulsation, andimp during self-priming. The research results indicate that: (1) The effective channel size for the reflux liquid toenter the volute varies depending on the location of the reflux hole. The effect of the impeller rotation on thereflux liquid becomes more obvious as the setting distance of the reflux aperture decreases. (2) The position ofthe reflux hole significantly affects the gas phase mass fraction inside the impeller, resulting in a significant reductionin the time it takes for the mass fraction to exceed 80%. (3) The position of the reflux hole significantly affectsthe average pressure on each monitoring surface. (4) Placing the reflux hole at a excessively distant radial distancecan result in an excessive vertical component. (5) The self-priming performance of the pump can be improved tosome extent by placing the return hole at a small radial distance. 展开更多
关键词 Self-priming pump self-priming time numerical calculation gas-liquid two-phase flow
下载PDF
A New Distribution Method for Wet Steam Injection Optimization
10
作者 Jingjing Gao Xingkai Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第1期109-126,共18页
A new approach and a new related distribution system are proposed to address the issue of uneven steam injection caused by the different suction capacities of the used wells during the application of steam“stimulatio... A new approach and a new related distribution system are proposed to address the issue of uneven steam injection caused by the different suction capacities of the used wells during the application of steam“stimulation”methods for enhanced oil recovery.The new distribution system consists of a swirler,spiral dividing baffles,and critical flow nozzles.Numerical simulations are used to analyze the flow-field and degree of steam homogeneity obtained with such an approach.The results indicate that a higher inlet pressure leads to better results.Additionally,the internal flow field becomes more stable,and the deviation from an even distribution reduces to±4.0%even when the resistance of each branch is inconsistent.Furthermore,field tests have yielded satisfactory results. 展开更多
关键词 Cyclical steam stimulation homogeneous distribution gas-liquid two-phase flow critical flow nozzle
下载PDF
带非局部边值条件的Gas-Liquid模型正解的渐近性态
11
作者 焦玉娟 《甘肃联合大学学报(自然科学版)》 2007年第3期8-11,共4页
应用bootstrap技巧,讨论了带非局部边值条件的Gas-Liquid模型正周期拟解的存在性和一般时变解的渐近性态.
关键词 非局部边值条件 gas-liquid模型 正周期拟解 存在性 渐近性
下载PDF
Numerical Simulation of Gas-Liquid Flow in a Stirred Tank with a Rushton Impeller 被引量:29
12
作者 王卫京 毛在砂 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第4期385-395,共11页
The gas-liquid flow field in a stirred tank with a Rushton diskturbine, including the impeller region, was numerically simulatedusing the improved inner-outer iterative procedure. Thecharacteristic features of the sti... The gas-liquid flow field in a stirred tank with a Rushton diskturbine, including the impeller region, was numerically simulatedusing the improved inner-outer iterative procedure. Thecharacteristic features of the stirred tank, such as gas cavity andaccumulation of gas at the two sides of wall baffles, can be capturedby the simulation. The simulated results agree well with availableexperimental data. Since the improved inner-outer iterative algorithmdemands on empirical formula and experimental data for the impellerregion, and the approach seems generally applicable for simulatinggas-liquid stirred tanks. 展开更多
关键词 stirred tank gas-liquid flow Rushton impeller inner-outer iteration
下载PDF
Gas-Liquid Microreaction Technology: Recent Developments and Future Challenges 被引量:18
13
作者 陈光文 乐军 袁权 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第5期663-669,共7页
Gas-liquid microreaction technology has shown great potential in a variety of industrial relevant mass transfer operations and reactions. This paper outlines the current research status of this technology with emphasi... Gas-liquid microreaction technology has shown great potential in a variety of industrial relevant mass transfer operations and reactions. This paper outlines the current research status of this technology with emphasis on reactor design, hydrodynamics and mass transfer phenomena as well as reaction applications. The future challenges of this important technology are also summarized. 展开更多
关键词 MICROCHANNEL MICROREACTOR two-phase flow flow pattem gas-liquid reaction
下载PDF
Design and Experimental Analyses of Small-flow High-head Centrifugal-vortex Pump for Gas-Liquid Two-phase Mixture 被引量:27
14
作者 朱祖超 谢鹏 +2 位作者 偶国富 崔宝玲 李昳 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第4期528-534,共7页
The design method of small-flow high-head centrifugal-vortex pump was presented. This pump, configured with inducer, complex-centrifugal impeller and open-vortex impeller, was put forward to deliver gas-liquid two-pha... The design method of small-flow high-head centrifugal-vortex pump was presented. This pump, configured with inducer, complex-centrifugal impeller and open-vortex impeller, was put forward to deliver gas-liquid two-phase mixture. An HTB-5/60 type sample pump was developed and tested on a closed-loop test rig. Experimental studies on performance and cavitation tests for gas-liquid two-phase mixture were carried out compared with pure-water experimental results. Also the effect of gas phase on pump was analyzed and discussed. The experimental results show that performance and cavitation characteristics of the sample purnp deteriorates progressively with increasing volume fraction of gas. When the total capacity Qm is between 4.5 m^3·h^-1 and 6 m^3·h^-1 and the gas flow rate qg below 0.66 m^3·h^-1, or qg/Qm is lower than 15%, the characteristic curves are approximately parallel to those in pure water test, but the performance deteriorates sharply until an abrupt flow-cutting at a critical volume fraction of gas. This pump is found suitable for transporting gas-liquid two-phase mixture when working around rated capacity of 5 m^3·h^-1 with qglQm below 15%. 展开更多
关键词 centrifugal-vortex pump gas-liquid two-phase flow performance and cavitation test
下载PDF
Measurement of Liquid Concentration Fields Near Interface with Cocurrent Gas-Liquid Flow Absorption Using Holographic Interferometry 被引量:5
15
作者 郭莹 袁希钢 +1 位作者 曾爱武 余国琮 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第6期747-753,共7页
Real-time laser holographic interferometry was applied to measure liquid concentrations of CO2 in the vicinity of gas-liquid free interface under the conditions of cocurrent gas-liquid flow for absorption of CO2 by et... Real-time laser holographic interferometry was applied to measure liquid concentrations of CO2 in the vicinity of gas-liquid free interface under the conditions of cocurrent gas-liquid flow for absorption of CO2 by ethanol. The influences of the Reynolds number on the measurable interface concentration and on the film thickness were discussed. The results show that CO2 concentration decreases exponentially along the mass transfer direction,and the concentration gradient increases as Reynolds number of either liquid or gas increases. CO2 concentrations fluctuate slightly along the direction of flow; on the whole, there is an increase in CO2 concentration. The investigation also demonstrated that film thickness decreases with the increase of Reynolds number of either of the two phases. Sherwood number representing the mass transfer coefficient was finally correlated as a function of the hydrodynamic parameters and the physical properties. 展开更多
关键词 cocurrent gas-liquid flow absorption concentration field NEAR interface HOLOGRAPHIC INTERFEROMETRY
下载PDF
Experimental Investigation of Vibration Response of A Free-Hanging Flexible Riser Induced by Internal Gas-Liquid Slug Flow 被引量:10
16
作者 ZHU Hong-jun ZHAO Hong-lei GAO Yue 《China Ocean Engineering》 SCIE EI CSCD 2018年第6期633-645,共13页
The vibration response of a free-hanging flexible riser induced by internal gas-liquid slug flow was studied experimentally in a small-diameter tube model based on Froude number criterion. The flow regime in a curved ... The vibration response of a free-hanging flexible riser induced by internal gas-liquid slug flow was studied experimentally in a small-diameter tube model based on Froude number criterion. The flow regime in a curved riser model and the response displacements of the riser were simultaneously recorded by high speed cameras. The gas superficial velocity ranges from 0.1 m/s to 0.6 m/s while the liquid superficial velocity from 0.06 m/s to 0.3 m/s.Severe slugging type 3, unstable oscillation flow and relatively stable slug flow were observed in the considered flow rates. Severe slugging type 3 characterized by premature gas penetration occurs at relatively low flow rates. Both the cycle time and slug length become shorter as the gas flow rate increases. The pressure at the riser base undergoes a longer period and larger amplitude of fluctuation as compared with the other two flow regimes. Additionally, severe slugging leads to the most vigorous in-plane vibration. However, the responses in the vertical and horizontal directions are not synchronized. The vertical vibration is dominated by the second mode while the horizontal vibration is dominated by the first mode. Similar to the vortex-induced vibration, three branches are identified as initial branch, build-up branch and descending branch for the response versus the mixture velocity of gas-liquid flow. 展开更多
关键词 gas-liquid two-phase flow severe slugging liquid slug flexible riser flow-induced vibration
下载PDF
Effect of the Inclination Angle on Slippage Loss in Gas-Liquid Two-Phase Flow 被引量:4
17
作者 Yushan Liu Yubin Su +2 位作者 Zhenhua Wu Wei Luo Ruiquan Liao 《Fluid Dynamics & Materials Processing》 EI 2020年第3期475-488,共14页
The lifting efficiency and stability of gas lift well are affected by the socalled slippage-loss effect in gas-liquid two-phase flow.The existing studies on this subject have generally been based on vertical and horiz... The lifting efficiency and stability of gas lift well are affected by the socalled slippage-loss effect in gas-liquid two-phase flow.The existing studies on this subject have generally been based on vertical and horizontal wells.Only a few of them have considered inclined pipes.In the present work a new focused study is presented along these lines.More specifically,we use the non-slip pressure drop model with Flanigan’s fluctuation correction coefficient formula(together with the parameters of slippage density,slippage pressure drop and slippage ratio)to analyze the influence of the inclination angle on slippage loss for different conditions(different gas-liquid superficial velocity and pipe diameters).Moreover,the“standard regression coefficient method”is used for multi-factor sensitivity analysis.The experimental results indicate that slippage loss is affected by multiple factors,and the influence of the inclination angle on slippage loss is less significant than other factors.The change of the slippage pressure drop with the superficial velocity of gas-liquid is similar to that of the total pressure drop.The inclination angles of 45°and 60°have the greatest influence on slippage loss.The correlation between slippage density and slippage ratio is not obvious.Using the so-called slippage ratio seems to be a more accurate option to evaluate the degree of slippage loss. 展开更多
关键词 Inclined pipes gas-liquid flow slippage loss pressure drop gas-liquid ratio
下载PDF
Flow Regime Identification of Gas-liquid Two-phase Flow Based on HHT 被引量:11
18
作者 孙斌 张宏建 +1 位作者 程路 赵玉晓 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第1期24-30,共7页
A new method to identify flow regime in two-phase flow was presented, based on signal processing of differential pressure using Hilbert Huang transform (HHT). Signals obtained from a Venturi meter were decomposed in... A new method to identify flow regime in two-phase flow was presented, based on signal processing of differential pressure using Hilbert Huang transform (HHT). Signals obtained from a Venturi meter were decomposed into different intrinsic mode functions (IMFs) with HHT, then the energy fraction of each intrinsic mode and the mean value of residual function were calculated, from which the rules of flow regime identification were summarized. Experiments were carried out on two-phase flow in the horizontal tubes with 50mm and 40mm inner diameter, while water flowrate was in the range of 1.3m^3.h^-1 to 10.5m^3.h^-1, oil flowrate was from 4.2m^3.h^-1 to 7.0m^3.h^-1 and gas flowrate from 0 to 15m^3.h^-1. The results show that the proposed rules have high precision for single phase, bubbly, and slug, plug flow regirne identification, which are independent of not only properties of two-phase fluid. In addition, the method can meet the need of industrial application because of its simple calculation. 展开更多
关键词 flow regime Hilbert-Huang transform differential pressure signal intrinsic mode function gas-liquid two-phase flow
下载PDF
An Investigation on the Void Fraction for upward Gas-Liquid Slug Flow in Vertical Pipe 被引量:5
19
作者 夏国栋 周芳德 胡明胜 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第4期436-440,共5页
In order to investigate the influence of the entrance effect on the spatial distribution of phases, the experiments on gas-liquid two-phase slug flow in a vertical pipe of 0.03m ID were carried out by using optical pr... In order to investigate the influence of the entrance effect on the spatial distribution of phases, the experiments on gas-liquid two-phase slug flow in a vertical pipe of 0.03m ID were carried out by using optical probes and an EKTAPRO 1000 high speed motion analyzer. It demonstrates that the radial profile of slug flow void fraction is parabolic. Influenced by the falling liquid film, the radial profile curve of liquid slug void fraction in the wake region is also parabolic. Since fully turbulent velocity distribution is built up in the developed region,the void fraction profile in this region is the saddle type. At given superficial liquid velocity, the liquid slug void fraction increases with gas velocity. The radial profiles of liquid slug void fraction at different axial locations are all saddle curves, but void fraction is obviously high around the centerline in the entrance region. The nearer the measuring station is from the entrance, the farther the peak location is away from the wall. 展开更多
关键词 gas-liquid slug flow void fraction vertical pipe
下载PDF
Gas-Liquid Mass Transfer in a Slurry Bubble Column Reactor under High Temperature and High Pressure 被引量:6
20
作者 杨卫国 王金福 金涌 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第3期253-257,共5页
The gas-liquid mass transfer of H2 and CO in a high temperature and high-pressure three-phase slurry bubble column reactor is studied. The gas-liquid volumetric mass transfer coefficients kLa are obtained by measuring... The gas-liquid mass transfer of H2 and CO in a high temperature and high-pressure three-phase slurry bubble column reactor is studied. The gas-liquid volumetric mass transfer coefficients kLa are obtained by measuring the dissolution rate of H2 and CO. The influences of the main operation conditions, such as temperature, pressure, superficial gas velocity and solid concentration, are studied systematically. Two empirical correlations are proposed to predict kLa values for H2 and CO in liquid paraffin/solid particles slurry bubble column reactors. 展开更多
关键词 gas-liquid mass transfer high temperature high pressure slurry bubble column
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部