In recent years, antibiotic pollution has become a serious threat to human health. In this study, a gas-liquid discharge plasma is developed to degrade ciprofloxacin hydrochloride in a multiphase mixed system containi...In recent years, antibiotic pollution has become a serious threat to human health. In this study, a gas-liquid discharge plasma is developed to degrade ciprofloxacin hydrochloride in a multiphase mixed system containing inorganic and organic impurities. The discharge characteristics are analyzed by diagnosing the applied voltage and discharge current waveforms, as well as the optical emission spectra. The work investigates how degradation efficiency is affected by applied voltage, gas flow rate, treatment time, initial concentration as well as the addition of γ-Al_(2)O_(3) pellets and peanut straw. After 70 min, the degradation efficiency of ciprofloxacin hydrochloride in the multiphase mixed system reached 99.6%. Its removal efficiency increases as the initial concentration decreases and the applied voltage increases. Besides, there is still a good degradation efficiency of ciprofloxacin hydrochloride with the addition of peanut straw.The degradation mechanism of ciprofloxacin hydrochloride is investigated through the analysis of degraded intermediates and reactive species.展开更多
Plasma-catalysis is considered as one of the most promising technologies for antibiotic degradation in water.In the plasma-catalytic system,one of the factors affecting the degradation effect is the performance of the...Plasma-catalysis is considered as one of the most promising technologies for antibiotic degradation in water.In the plasma-catalytic system,one of the factors affecting the degradation effect is the performance of the photocatalyst,which is usually restricted by the rapid recombination of electrons and holes as well as narrow light absorption range.In this research,a photocatalyst g-C_(3)N_(4)/TiO_(2) was prepared and coupled with gas-liquid discharge(GLD)to degrade tetracycline(TC).The performance was examined,and the degradation pathways and mechanisms were studied.Results show that a 90%degradation rate is achieved in the GLD with g-C_(3)N_(4)/TiO_(2) over a 10 min treatment.Increasing the pulse voltage is conducive to increasing the degradation rate,whereas the addition of excessive g-C_(3)N_(4)/TiO_(2) tends to precipitate agglomerates,resulting in a poor degradation efficiency.The redox properties of the g-C_(3)N_(4)/TiO_(2) surface promote the generation of oxidizing active species(H2O2,O3)in solution.Radical quenching experiments showed that·OH,hole(h^(+)),play important roles in the TC degradation by the discharge with g-C_(3)N_(4)/TiO_(2).Two potential degradation pathways were proposed based on the intermediates.The toxicity of tetracycline was reduced by treatment in the system.Furthermore,the g-C_(3)N_(4)/TiO_(2) composites exhibited excellent recoverability and stability.展开更多
Atmospheric gas-liquid discharge with argon as a working gas is presented by employed nanosecond pulse power. The discharge is presented in a glow-like mode. The discharge powers are determined to be less than 1 W, an...Atmospheric gas-liquid discharge with argon as a working gas is presented by employed nanosecond pulse power. The discharge is presented in a glow-like mode. The discharge powers are determined to be less than 1 W, and remains almost constant when the discharge duration time increases. Bountiful active species are determined by capturing optical emission spectra, and their main generation processes are also discussed. The plasma gas temperature is calculated as 350 K by comparing the experimental spectra and the simulated ones of N2(C3Ⅱg→B3Ⅱg, △v=-2). The time resolved vibrational and rotational temperature is researched to present the stability of discharge when pulse voltage and discharge duration vary. The electron density is determined to be 1016 cm-3 according to the Stark broadening effect of the Ha line.展开更多
The plasma characteristics of a gas-liquid phase discharge reactor were investigated by optical and electrical methods.The nozzle-cylinder electrode in the discharge reactor was supplied witha negative nanosecond puls...The plasma characteristics of a gas-liquid phase discharge reactor were investigated by optical and electrical methods.The nozzle-cylinder electrode in the discharge reactor was supplied witha negative nanosecond pulsed generator.The optical emission spectrum diagnosis revealed that OH(A2∑+ → X2Π,306–309 nm),N32(CΠ→B3Πg,337 nm),O(3p5p→3s-5s-0,777.2 nm)and O(3p3p→3s3s0,844.6 nm)were produced in the discharge plasma channels.The electron temperature(Te)was calculated from the emission relative intensity ratio between the atomic O 777.2 nm and 844.6 nm,and it increased with the applied voltage and the pulsed frequency and fell within the range of 0.5–0.8 e V.The gas temperature(Tg)that was measured by Lifbase was in a range from 400 K to 600 K.展开更多
Atmospheric pressure plasma technology is gaining increasing importance because it is a simple and tunable synthesis process for the production of metallic nanoparticles.In addition to the development of the power sup...Atmospheric pressure plasma technology is gaining increasing importance because it is a simple and tunable synthesis process for the production of metallic nanoparticles.In addition to the development of the power supply,improving the reactor is also one of the main strategies to enhanee the utility.In this study,a simple reactor for the gas-liquid discharge plasma induced by argon gas was applied to synthesize silver nanopailicles from silver nitrate(AgNO3)in solution.An AC power supply with a peak voltage of 3.5 kV was used.The frequency and on-time were set to 50 kHz and 2.5“s,respectively.The oscilloscope showed that the rising time was approximately 2“s.The ethanol was used as the source for the reactive reducing agent.No more additional comp on ents existed in the solution during the discharge and neither of the electrodes was in contact with the treated solution.The temperature in creased by 10°C within 1 min without a cooling system.Carbon was the main impurity and was expected to be produced from the decomposition of the organics under the plasma.The elevated temperature decreased the organic by-products by evaporation and could also decrease the production of carbon.Transmission electron microscopy showed that the spherical silver nanoparticles with a size of approximately 10 nm were synthesized with a crystal structure and that a low concentration of ethanol prefers the production of the mono-dispersed colloid.展开更多
In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open ...In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open space outside the electrode structure at a lower voltage by constructing a three-dimensional non-uniform spatial electric field using a contact electrode structure.The air purification study is also carried out.Firstly,a contact electrode structure is constructed using a three-dimensional wire electrode.The distribution characteristics of the spatial electric field formed by this electrode structure are analyzed,and the effects of the non-uniform electric field and the different angles of the vertical wire on the generation of three-dimensional spatial diffuse discharge are investigated.Secondly,the copper foam contact electrode structure is constructed using copper foam material,and the effects of different mesh sizes on the electric field distribution are analyzed.The results show that as the mesh size of the copper foam becomes larger,a strong electric field region exists not only on the surface of the insulating layer,but also on the surface of the vertical wires inside the copper foam,i.e.,the strong electric field region shows a three-dimensional distribution.Besides,as the mesh size increases,the area of the vertical strong electric field also increases.However,the electric field strength on the surface of the insulating layer gradually decreases.Therefore,the appropriate mesh size can effectively increase the discharge area,which is conducive to improving the air purification efficiency.Finally,a highly permeable stacked electrode structure of multilayer wire-copper foam is designed.In combination with an ozone treatment catalyst,an air purification device is fabricated,and the air purification experiment is carried out.展开更多
Ultrasonic-assisted micro-electro-discharge machining(EDM)has the potential to enhance processing responses such as material removal rate(MRR)and surface finish.To understand the reasons for this enhancement,the physi...Ultrasonic-assisted micro-electro-discharge machining(EDM)has the potential to enhance processing responses such as material removal rate(MRR)and surface finish.To understand the reasons for this enhancement,the physical mechanisms responsible for the individual discharges and the craters that they form need to be explored.This work examines features of craters formed by single discharges at various parameter values in both conventional and ultrasonic-assistedEDM of Ti6Al4V.High-speed imaging of the plasma channel is performed,and data on the individual discharges are captured in real-time.A 2D axisymmetric model using finite element software is established to model crater formation.On the basis of simulation and experimental results,a comparative study is then carried out to examine the effects of ultrasonic vibrational assistance on crater geometry.For every set ofEDM parameters,the crater diameter and depth from a single discharge are found to be higher in ultrasonic-assistedEDM than in conventionalEDM.The improved crater geometry and the reduced bulge formation at the crater edges are attributed to the increased melt pool velocity and temperature predicted by the model.展开更多
Dielectric barrier discharge(DBD)is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure,and the dielectric barrier layer between the electrodes plays a key role in the DB...Dielectric barrier discharge(DBD)is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure,and the dielectric barrier layer between the electrodes plays a key role in the DBD processes and enhancing discharge uniformity.In this work,the uniformity and discharge characteristics of the nanosecond(ns)pulsed DBD with dielectric barrier layers made of alumina,quartz glass,polycarbonate(PC),and polypropylene(PP)are investigated via discharge image observation,voltage-current waveform measurement and optical emission spectral diagnosis.Through analyzing discharge image by gray value standard deviation method,the discharge uniformity is quantitatively calculated.The effects of the space electric field intensity,the electron density(Ne),and the space reactive species on the uniformity are studied with quantifying the gap voltage Ug and the discharge current Ig,analyzing the recorded optical emission spectra,and simulating the temporal distribution of Ne with a one-dimensional fluid model.It is found that as the relative permittivity of the dielectric materials increases,the space electric field intensity is enhanced,which results in a higher Ne and electron temperature(Te).Therefore,an appropriate value of space electric field intensity can promote electron avalanches,resulting in uniform and stable plasma by the merging of electron avalanches.However,an excessive value of space electric field intensity leads to the aggregation of space charges and the distortion of the space electric field,which reduce the discharge uniformity.The surface roughness and the surface charge decay are measured to explain the influences of the surface properties and the second electron emission on the discharge uniformity.The results in this work give a comprehensive understanding of the effect of the dielectric materials on the DBD uniformity,and contribute to the selection of dielectric materials for DBD reactor and the realization of atmospheric pressure uniform,stable,and reactive plasma sources.展开更多
The discharge morphology of pulsed dielectric barrier discharge(PDBD) plays important roles in its applications. Here, we systematically investigated the effects of the voltage amplitude,discharge gap, and O_(2)conten...The discharge morphology of pulsed dielectric barrier discharge(PDBD) plays important roles in its applications. Here, we systematically investigated the effects of the voltage amplitude,discharge gap, and O_(2)content on the PDBD morphology, and revealed the possible underlying mechanism of the U-shaped formation. First, the morphological evolution under different conditions was recorded. A unique U-shaped region appears in the middle edge region when the gap is larger than 2 mm, while the entire discharge region remains columnar under a 2 mm gap in He PDBD. The width of the discharge and the U-shaped region increase with the increase in voltage, and decrease with the increase of the gap and O_(2)content. To explain this phenomenon,a two-dimensional symmetric model was developed to simulate the spatiotemporal evolution of different species and calculate the electric thrust. The discharge morphology evolution directly corresponds to the excited-state atomic reduction process. The electric thrust on the charged particles mainly determines the reaction region and strongly influences the U-shaped formation.When the gap is less than 2 mm, the electric thrust is homogeneous throughout the entire region,resulting in a columnar shape. However, when the gap is larger than 2 mm or O_(2)is added, the electric thrust in the edge region becomes greater than that in the middle, leading to the U-shaped formation. Furthermore, in He PDBD, the charged particles generating electric thrust are mainly electrons and helium ions, while in He/O_(2)PDBD those that generate electric thrust at the outer edge of the electrode surface are mainly various oxygen-containing ions.展开更多
Background: An abnormal vaginal discharge is a common complaint among women of reproductive age, and it can indicate serious conditions like pelvic inflammatory disease and cervical cancer. This study aimed to assess ...Background: An abnormal vaginal discharge is a common complaint among women of reproductive age, and it can indicate serious conditions like pelvic inflammatory disease and cervical cancer. This study aimed to assess the predictors of abnormal vaginal discharge in women of reproductive age group in Imo State, Southeast Nigeria. Methods: A cross-sectional study was conducted among 368 women of reproductive age group attending the clinic at Federal University Teaching Hospital Owerri, in Imo State, Nigeria. Respondents were recruited using a systematic sampling technique. Data were collected using a pre-tested interviewer-administered questionnaire. Multivariable analysis was performed to determine predictors of abnormal vaginal discharge. Statistical significance was set at p Results: The mean age of the respondents was 30 ± 4.5 years. Predictors of abnormal vaginal discharge were: age 36 - 45 years (OR: 4.5;95% C.I: 1.023 - 8.967, p = 0.041), being a student (OR: 2.4: 95% C.I: 1.496 - 7.336, p = 0.003), use of oral contraceptives (OR: 3.4;95% C.I: 1.068 - 6.932, p = 0.010), use of water cistern (OR: 4.7;C.I: 1.654 - 5.210, p = 0.028) anal hygiene practices (OR: 2.7;95% C.I: 1.142 - 4.809, p Conclusion: These findings suggest that targeted sexual and reproductive health interventions should be provided to reduce the risk of abnormal vaginal discharge in women of reproductive age group.展开更多
In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the...In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the blade electrodes.A range of experimental parameters,including the inter-electrode spacing,gas flow rate,applied voltage,and the type of the powder,were systematically varied to elucidate the influence of solid powder matter on the dynamics of gliding arc discharge(GAD).The discharge images were captured by ICCD and digital camera to investigate the mass transfer characteristics of GS-GAD,and the electrical parameters,such as the effective values of voltage,current,and discharge power were record to reveal the discharge characteristics of GS-GAD.The results demonstrate that powder undergoes spontaneous movement towards the upper region of the gliding arc due to the influence of electric field force.Increasing the discharge voltage,decreasing relative dielectric constant of the powder and reducing the electrode-to-sieve-plate distance all contribute to a greater involvement of powder in the GAD process,subsequently resulting in an enhanced powder concentration within the GAD region.Additionally,powder located beneath the gliding arc experiences downward resistance caused by the opposing gas flow and arc.Excessive gas flow rate notably hampers the powder concentration within the discharge region,and the velocity of powder motion in the upper part of the GAD region is reduced.Under the condition of electrode-to-sieve-plate distance of 30 mm,gas flow rate of 1.5 L/min,and peak-to-peak voltage of 31 kV,the best combination of arc gliding and powder spark discharge phenomena can be achieved with the addition of Al_(2)O_(3) powder.展开更多
SF_(6) has excellent insulation performance and arc extinguishing ability,and is widely used in the power industry.However,its global warming potential is about 23,500 times that of C0_(2),it can exist stably in the a...SF_(6) has excellent insulation performance and arc extinguishing ability,and is widely used in the power industry.However,its global warming potential is about 23,500 times that of C0_(2),it can exist stably in the atmosphere,it is not easily degradable and is of great potential harm to the environment.Based on pulsed dielectric barrier discharge plasma technology,the effects of H_(2)O and 0_(2) on the degradation of SF_(6) were studied.Studies have shown that H_(2)O can effectively promote the decomposition of SF_(6) and improve its degradation rate and energy efficiency of degradation.Under the action of a pulse input voltage and input frequency of 15 kV and 15 kHz,respectively,when H_(2)O is added alone the effect of 1% H_(2)O is the best,and the rate and energy efficiency of degradation of SF_(6) reach their maximum values,which are 91.9% and 8.25 g kWh^(-1),respectively.The synergistic effect of H_(2)O and O_(2) on the degradation of SF_(6) was similar to that of H_(2)O.When the concentration of H_(2)O and O_(2) was 1%,the system obtained the best rate and energy efficiency of degradation,namely 89.7% and 8.05 g kWh~(-1),respectively.At the same time,different external gases exhibit different capabilities to regulate decomposition products.The addition of H_(2)O can effectively improve the selectivity of S0_(2).Under the synergistic effect of H_(2)O and O_(2),with increase in O_(2) concentration the degradation products gradually transformed into SO_(2)F_(2).From the perspective of harmless treatment of the degradation products of SF_(6),the addition of O_(2) during the SF_(6) degradation process should be avoided.展开更多
It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel...It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel underwater discharge stage identification method based on the Strong Tracking Filter(STF) and impedance change characteristics. The time-varying equivalent circuit model of the discharge underwater is established based on the plasma theory analysis of the impedance change characteristics and mechanism of the discharge process. The STF is used to reduce the randomness of the impedance of repeated discharges underwater, and then the universal identification resistance data is obtained. Based on the resistance variation characteristics of the discriminating resistance of the pre-breakdown, main, and oscillatory discharge stages, the threshold values for determining the discharge stage are obtained. These include the threshold values for the resistance variation rate(K) and the moment(t).Experimental and error analysis results demonstrate the efficacy of this innovative method in discharge stage determination, with a maximum mean square deviation of Scrless than 1.761.展开更多
The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a par...The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a parallel DC electrode into the standard DBD design. This design improves the body force and induced jet velocity while allowing flexible control of the induced jet angle, overcoming the limitations of discharge extension and uncontrollable direction in traditional DBD plasma actuators. An integrated plasma power supply has been designed specifically for TES-DBD plasma actuators, streamlining the power supply management. The methodology involves designing the circuit topology for the TES-DBD power supply, followed by simulating and validating its operating principles using Multisim software. The operational performance of the power supply is evaluated through a comprehensive analysis of its electrical,thermal, and aerodynamic properties specific to TES-DBD plasma actuation.展开更多
The key plasma parameters under different discharge modes, such as heavy-particle and electron temperatures, electron number density, and nonequilibrium volume of plasmas, play important roles in various applications ...The key plasma parameters under different discharge modes, such as heavy-particle and electron temperatures, electron number density, and nonequilibrium volume of plasmas, play important roles in various applications of gas discharge plasmas. In this study, a self-consistent two-dimensional nonequilibrium fluid model coupled with an external circuit model is established to reveal the mechanisms related to the discharge modes, including the normal glow, abnormal glow,arc, and glow-to-arc transition modes, with an atmospheric-pressure direct-current(DC) argon discharge as a model plasma system. The modeling results show that, under different discharge modes, the most significant difference between the preceding four discharge modes lies in the current and energy transfer processes on the cathode side. On one hand, the current to the cathode surface is mainly delivered by the ions coming from the plasma column under the glow discharge mode due to the low temperature of the solid cathode, whereas the thermionic and secondary electrons emitted from the hot cathode surface play a very important role under the arc mode with a higher cathode surface temperature and higher ion flux toward the cathode. On the other hand, the energy transfer channel on the cathode side changes from mainly heating the solid cathode under the glow mode to simultaneously heating both the solid cathode and plasma column under the arc mode with an increase in the discharge current. Consequently, the power density in the cathode sheath(P_c) was used as a key parameter for judging different discharge modes, and the range of(0.28–1.2) × 10^(12) W m^(-3) was determined as a critical window of P_c corresponding to the glow-to-arc-mode transition for the atmospheric-pressure DC argon discharge, which was also verified by comparison with the experimental results in this study and the data in the previous literature.展开更多
Ionic liquid electrospray(ILE) in an atmospheric environment is often accompanied by the gas discharge phenomenon. It interferes with the normal operation of the electrospray and the measurement of experimental parame...Ionic liquid electrospray(ILE) in an atmospheric environment is often accompanied by the gas discharge phenomenon. It interferes with the normal operation of the electrospray and the measurement of experimental parameters. In this study, electrospray experiments were conducted on the ionic liquid EMI-BF4. The observations revealed that the operating modes of the ionic liquid depend on the voltage polarity at high voltages. Additionally, a correspondence between the operating mode of ILE and the current signal in the circuit was established. The shape of the liquid cone formed at the needle tip bore a striking resemblance to the plume of corona discharge, suggesting that the motion trajectory of electrons influenced the curvature of the liquid cone. Steamer theory provided a clear explanation for the change in curvature as the voltage increased.展开更多
The influence of micro-Ca/In alloying on the microstructural charac teristics,electrochemical behaviors and discharge properties of extruded dilute Mg-0.5Bi-0.5Sn-based(wt.%)alloys as anodes for Mg-air batteries are e...The influence of micro-Ca/In alloying on the microstructural charac teristics,electrochemical behaviors and discharge properties of extruded dilute Mg-0.5Bi-0.5Sn-based(wt.%)alloys as anodes for Mg-air batteries are evaluated.The grain size and texture intensity of the Mg-Bi-Sn-based alloys are significantly decreased after the Ca/In alloying,particularly for the In-containing alloy.Note that,in addition to nanoscale Mg_(3)Bi_(2)phase,a new microscale Mg_(2)Bi_(2)Ca phase forms in the Ca-containing alloy.The electrochemical test results demonstrate that Ca/In micro-alloying can enhance the electrochemical activity.Using In to alloy the Mg-Bi-Sn-based alloy is effective in restricting the cathodic hydrogen evolution(CHE)kinetics,leading to a low self-corrosion rate,while severe CHE occurred after Ca alloying.The micro-alloying of Ca/In to Mg-Bi-Sn-based alloy strongly deteriorates the compactness of discharge products film and mitigates the"chunk effect"(CE),hence the cell voltage,anodic efficiency as well as discharge capacity are greatly improved.The In-containing alloy exhibits outstanding discharge performance under the combined effect of the modified microstructure and discharge products,thus making it a potential anode material for primary Mg-air battery.展开更多
For the basins with debris flow development,its channel terrain exhibits a tortuous shape,which significantly restricts the movement of debris flows and leads to severe erosion effects on the concave bank.Therefore,th...For the basins with debris flow development,its channel terrain exhibits a tortuous shape,which significantly restricts the movement of debris flows and leads to severe erosion effects on the concave bank.Therefore,this study aims to analyze the shear force of debris flows within the bend channel.We established the relationship between the shear force and bend curvature through laboratory experiments.Under the long-term erosion by debris flows,the curvature radius of bends gradually increases,however,when this increasing trend reaches an equilibrium state with the intensity of debris flow discharge,there will be no significant change in curvature radius.In general,the activity pattern and discharges of debris flows would remain relatively stable.Hence,we can infer the magnitude of debris flow discharges from the terrain parameters of the bend channel.展开更多
In the space plasma environment, primary discharge may occur on the solar array and evolve into a destructive sustained arc, which threatens the safe operation of the spacecraft. Based on the plasma expansion fluid th...In the space plasma environment, primary discharge may occur on the solar array and evolve into a destructive sustained arc, which threatens the safe operation of the spacecraft. Based on the plasma expansion fluid theory, a new multicomponent plasma expansion model is proposed in this study, which takes into account the effects of ion species, ion number, initial discharge current, and Low Earth Orbit(LEO) plasma environment. The expansion simulation of single-component and multicomponent ions is carried out respectively, and the variations of plasma number density, expansion distance, and speed during the expansion process are obtained.Compared with the experimental results, the evolution of propagation distance and speed is closed and the error is within a reasonable range, which verifies the validity and rationality of the model. The propagation characteristics of the primary discharge on the solar array surface and the influence of the initial value on the maximum propagation distance and the propagation current peaks are investigated. This study can provide important theoretical support for the propagation and evolution of the primary discharge and the key behavior of the transition to secondary discharge on spacecraft solar array.展开更多
基金supported by National Natural Science Foundations of China (Nos. 52307163 and 12305279)the China Postdoctoral Science Foundation (Nos. 2023M740498 and 2022M710590)Postdoctoral Fellowship Program of CPSF (No. GZC20230348)。
文摘In recent years, antibiotic pollution has become a serious threat to human health. In this study, a gas-liquid discharge plasma is developed to degrade ciprofloxacin hydrochloride in a multiphase mixed system containing inorganic and organic impurities. The discharge characteristics are analyzed by diagnosing the applied voltage and discharge current waveforms, as well as the optical emission spectra. The work investigates how degradation efficiency is affected by applied voltage, gas flow rate, treatment time, initial concentration as well as the addition of γ-Al_(2)O_(3) pellets and peanut straw. After 70 min, the degradation efficiency of ciprofloxacin hydrochloride in the multiphase mixed system reached 99.6%. Its removal efficiency increases as the initial concentration decreases and the applied voltage increases. Besides, there is still a good degradation efficiency of ciprofloxacin hydrochloride with the addition of peanut straw.The degradation mechanism of ciprofloxacin hydrochloride is investigated through the analysis of degraded intermediates and reactive species.
基金supported by National Natural Science Foundation of China(Nos.52277151 and 51907088)Innovative Talents Team Project of‘Six Talent Peaks’of Jiangsu Province(No.TD-JNHB-006).
文摘Plasma-catalysis is considered as one of the most promising technologies for antibiotic degradation in water.In the plasma-catalytic system,one of the factors affecting the degradation effect is the performance of the photocatalyst,which is usually restricted by the rapid recombination of electrons and holes as well as narrow light absorption range.In this research,a photocatalyst g-C_(3)N_(4)/TiO_(2) was prepared and coupled with gas-liquid discharge(GLD)to degrade tetracycline(TC).The performance was examined,and the degradation pathways and mechanisms were studied.Results show that a 90%degradation rate is achieved in the GLD with g-C_(3)N_(4)/TiO_(2) over a 10 min treatment.Increasing the pulse voltage is conducive to increasing the degradation rate,whereas the addition of excessive g-C_(3)N_(4)/TiO_(2) tends to precipitate agglomerates,resulting in a poor degradation efficiency.The redox properties of the g-C_(3)N_(4)/TiO_(2) surface promote the generation of oxidizing active species(H2O2,O3)in solution.Radical quenching experiments showed that·OH,hole(h^(+)),play important roles in the TC degradation by the discharge with g-C_(3)N_(4)/TiO_(2).Two potential degradation pathways were proposed based on the intermediates.The toxicity of tetracycline was reduced by treatment in the system.Furthermore,the g-C_(3)N_(4)/TiO_(2) composites exhibited excellent recoverability and stability.
基金supported by National Natural Science Foundation of China(Grant Nos.51677019)National Key Research and Development Program of China(2016YFC0207200)
文摘Atmospheric gas-liquid discharge with argon as a working gas is presented by employed nanosecond pulse power. The discharge is presented in a glow-like mode. The discharge powers are determined to be less than 1 W, and remains almost constant when the discharge duration time increases. Bountiful active species are determined by capturing optical emission spectra, and their main generation processes are also discussed. The plasma gas temperature is calculated as 350 K by comparing the experimental spectra and the simulated ones of N2(C3Ⅱg→B3Ⅱg, △v=-2). The time resolved vibrational and rotational temperature is researched to present the stability of discharge when pulse voltage and discharge duration vary. The electron density is determined to be 1016 cm-3 according to the Stark broadening effect of the Ha line.
基金supported by National Natural Science Foundation of China(Grant No.51207089)
文摘The plasma characteristics of a gas-liquid phase discharge reactor were investigated by optical and electrical methods.The nozzle-cylinder electrode in the discharge reactor was supplied witha negative nanosecond pulsed generator.The optical emission spectrum diagnosis revealed that OH(A2∑+ → X2Π,306–309 nm),N32(CΠ→B3Πg,337 nm),O(3p5p→3s-5s-0,777.2 nm)and O(3p3p→3s3s0,844.6 nm)were produced in the discharge plasma channels.The electron temperature(Te)was calculated from the emission relative intensity ratio between the atomic O 777.2 nm and 844.6 nm,and it increased with the applied voltage and the pulsed frequency and fell within the range of 0.5–0.8 e V.The gas temperature(Tg)that was measured by Lifbase was in a range from 400 K to 600 K.
文摘Atmospheric pressure plasma technology is gaining increasing importance because it is a simple and tunable synthesis process for the production of metallic nanoparticles.In addition to the development of the power supply,improving the reactor is also one of the main strategies to enhanee the utility.In this study,a simple reactor for the gas-liquid discharge plasma induced by argon gas was applied to synthesize silver nanopailicles from silver nitrate(AgNO3)in solution.An AC power supply with a peak voltage of 3.5 kV was used.The frequency and on-time were set to 50 kHz and 2.5“s,respectively.The oscilloscope showed that the rising time was approximately 2“s.The ethanol was used as the source for the reactive reducing agent.No more additional comp on ents existed in the solution during the discharge and neither of the electrodes was in contact with the treated solution.The temperature in creased by 10°C within 1 min without a cooling system.Carbon was the main impurity and was expected to be produced from the decomposition of the organics under the plasma.The elevated temperature decreased the organic by-products by evaporation and could also decrease the production of carbon.Transmission electron microscopy showed that the spherical silver nanoparticles with a size of approximately 10 nm were synthesized with a crystal structure and that a low concentration of ethanol prefers the production of the mono-dispersed colloid.
基金supported by the Fundamental Research Funds for the Central Universities(No.2022YJS094)。
文摘In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open space outside the electrode structure at a lower voltage by constructing a three-dimensional non-uniform spatial electric field using a contact electrode structure.The air purification study is also carried out.Firstly,a contact electrode structure is constructed using a three-dimensional wire electrode.The distribution characteristics of the spatial electric field formed by this electrode structure are analyzed,and the effects of the non-uniform electric field and the different angles of the vertical wire on the generation of three-dimensional spatial diffuse discharge are investigated.Secondly,the copper foam contact electrode structure is constructed using copper foam material,and the effects of different mesh sizes on the electric field distribution are analyzed.The results show that as the mesh size of the copper foam becomes larger,a strong electric field region exists not only on the surface of the insulating layer,but also on the surface of the vertical wires inside the copper foam,i.e.,the strong electric field region shows a three-dimensional distribution.Besides,as the mesh size increases,the area of the vertical strong electric field also increases.However,the electric field strength on the surface of the insulating layer gradually decreases.Therefore,the appropriate mesh size can effectively increase the discharge area,which is conducive to improving the air purification efficiency.Finally,a highly permeable stacked electrode structure of multilayer wire-copper foam is designed.In combination with an ozone treatment catalyst,an air purification device is fabricated,and the air purification experiment is carried out.
基金support from the Department of Science and Technology (DST),Government of India (Grant No.ECR/DST/2017/000918)the Indian Institute of Technology Ropar for providing financial support under an ISIRD grant (F.No.9-282/2017IITRPR/705).
文摘Ultrasonic-assisted micro-electro-discharge machining(EDM)has the potential to enhance processing responses such as material removal rate(MRR)and surface finish.To understand the reasons for this enhancement,the physical mechanisms responsible for the individual discharges and the craters that they form need to be explored.This work examines features of craters formed by single discharges at various parameter values in both conventional and ultrasonic-assistedEDM of Ti6Al4V.High-speed imaging of the plasma channel is performed,and data on the individual discharges are captured in real-time.A 2D axisymmetric model using finite element software is established to model crater formation.On the basis of simulation and experimental results,a comparative study is then carried out to examine the effects of ultrasonic vibrational assistance on crater geometry.For every set ofEDM parameters,the crater diameter and depth from a single discharge are found to be higher in ultrasonic-assistedEDM than in conventionalEDM.The improved crater geometry and the reduced bulge formation at the crater edges are attributed to the increased melt pool velocity and temperature predicted by the model.
基金supported by National Natural Science Foundation of China(Nos.52037004 and 52177148)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_1449).
文摘Dielectric barrier discharge(DBD)is considered as a promising technique to produce large volume uniform plasma at atmospheric pressure,and the dielectric barrier layer between the electrodes plays a key role in the DBD processes and enhancing discharge uniformity.In this work,the uniformity and discharge characteristics of the nanosecond(ns)pulsed DBD with dielectric barrier layers made of alumina,quartz glass,polycarbonate(PC),and polypropylene(PP)are investigated via discharge image observation,voltage-current waveform measurement and optical emission spectral diagnosis.Through analyzing discharge image by gray value standard deviation method,the discharge uniformity is quantitatively calculated.The effects of the space electric field intensity,the electron density(Ne),and the space reactive species on the uniformity are studied with quantifying the gap voltage Ug and the discharge current Ig,analyzing the recorded optical emission spectra,and simulating the temporal distribution of Ne with a one-dimensional fluid model.It is found that as the relative permittivity of the dielectric materials increases,the space electric field intensity is enhanced,which results in a higher Ne and electron temperature(Te).Therefore,an appropriate value of space electric field intensity can promote electron avalanches,resulting in uniform and stable plasma by the merging of electron avalanches.However,an excessive value of space electric field intensity leads to the aggregation of space charges and the distortion of the space electric field,which reduce the discharge uniformity.The surface roughness and the surface charge decay are measured to explain the influences of the surface properties and the second electron emission on the discharge uniformity.The results in this work give a comprehensive understanding of the effect of the dielectric materials on the DBD uniformity,and contribute to the selection of dielectric materials for DBD reactor and the realization of atmospheric pressure uniform,stable,and reactive plasma sources.
基金financial support from the Interdisciplinary Fund of the Wuhan National High Magnetic Field Center (No. WHMFC202101)。
文摘The discharge morphology of pulsed dielectric barrier discharge(PDBD) plays important roles in its applications. Here, we systematically investigated the effects of the voltage amplitude,discharge gap, and O_(2)content on the PDBD morphology, and revealed the possible underlying mechanism of the U-shaped formation. First, the morphological evolution under different conditions was recorded. A unique U-shaped region appears in the middle edge region when the gap is larger than 2 mm, while the entire discharge region remains columnar under a 2 mm gap in He PDBD. The width of the discharge and the U-shaped region increase with the increase in voltage, and decrease with the increase of the gap and O_(2)content. To explain this phenomenon,a two-dimensional symmetric model was developed to simulate the spatiotemporal evolution of different species and calculate the electric thrust. The discharge morphology evolution directly corresponds to the excited-state atomic reduction process. The electric thrust on the charged particles mainly determines the reaction region and strongly influences the U-shaped formation.When the gap is less than 2 mm, the electric thrust is homogeneous throughout the entire region,resulting in a columnar shape. However, when the gap is larger than 2 mm or O_(2)is added, the electric thrust in the edge region becomes greater than that in the middle, leading to the U-shaped formation. Furthermore, in He PDBD, the charged particles generating electric thrust are mainly electrons and helium ions, while in He/O_(2)PDBD those that generate electric thrust at the outer edge of the electrode surface are mainly various oxygen-containing ions.
文摘Background: An abnormal vaginal discharge is a common complaint among women of reproductive age, and it can indicate serious conditions like pelvic inflammatory disease and cervical cancer. This study aimed to assess the predictors of abnormal vaginal discharge in women of reproductive age group in Imo State, Southeast Nigeria. Methods: A cross-sectional study was conducted among 368 women of reproductive age group attending the clinic at Federal University Teaching Hospital Owerri, in Imo State, Nigeria. Respondents were recruited using a systematic sampling technique. Data were collected using a pre-tested interviewer-administered questionnaire. Multivariable analysis was performed to determine predictors of abnormal vaginal discharge. Statistical significance was set at p Results: The mean age of the respondents was 30 ± 4.5 years. Predictors of abnormal vaginal discharge were: age 36 - 45 years (OR: 4.5;95% C.I: 1.023 - 8.967, p = 0.041), being a student (OR: 2.4: 95% C.I: 1.496 - 7.336, p = 0.003), use of oral contraceptives (OR: 3.4;95% C.I: 1.068 - 6.932, p = 0.010), use of water cistern (OR: 4.7;C.I: 1.654 - 5.210, p = 0.028) anal hygiene practices (OR: 2.7;95% C.I: 1.142 - 4.809, p Conclusion: These findings suggest that targeted sexual and reproductive health interventions should be provided to reduce the risk of abnormal vaginal discharge in women of reproductive age group.
基金supported by 173 Program of China,and National Natural Science Foundation of China(No.92271116).
文摘In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the blade electrodes.A range of experimental parameters,including the inter-electrode spacing,gas flow rate,applied voltage,and the type of the powder,were systematically varied to elucidate the influence of solid powder matter on the dynamics of gliding arc discharge(GAD).The discharge images were captured by ICCD and digital camera to investigate the mass transfer characteristics of GS-GAD,and the electrical parameters,such as the effective values of voltage,current,and discharge power were record to reveal the discharge characteristics of GS-GAD.The results demonstrate that powder undergoes spontaneous movement towards the upper region of the gliding arc due to the influence of electric field force.Increasing the discharge voltage,decreasing relative dielectric constant of the powder and reducing the electrode-to-sieve-plate distance all contribute to a greater involvement of powder in the GAD process,subsequently resulting in an enhanced powder concentration within the GAD region.Additionally,powder located beneath the gliding arc experiences downward resistance caused by the opposing gas flow and arc.Excessive gas flow rate notably hampers the powder concentration within the discharge region,and the velocity of powder motion in the upper part of the GAD region is reduced.Under the condition of electrode-to-sieve-plate distance of 30 mm,gas flow rate of 1.5 L/min,and peak-to-peak voltage of 31 kV,the best combination of arc gliding and powder spark discharge phenomena can be achieved with the addition of Al_(2)O_(3) powder.
基金supported by Guizhou Province (Ceneral), grant/award number Qian Ke He Zhi Cheng [2022] General 207, National Natural Science Foundation of China (No. 52307170)Natural Science Foundation of Hubei Province, China (No. 2023AFB382)。
文摘SF_(6) has excellent insulation performance and arc extinguishing ability,and is widely used in the power industry.However,its global warming potential is about 23,500 times that of C0_(2),it can exist stably in the atmosphere,it is not easily degradable and is of great potential harm to the environment.Based on pulsed dielectric barrier discharge plasma technology,the effects of H_(2)O and 0_(2) on the degradation of SF_(6) were studied.Studies have shown that H_(2)O can effectively promote the decomposition of SF_(6) and improve its degradation rate and energy efficiency of degradation.Under the action of a pulse input voltage and input frequency of 15 kV and 15 kHz,respectively,when H_(2)O is added alone the effect of 1% H_(2)O is the best,and the rate and energy efficiency of degradation of SF_(6) reach their maximum values,which are 91.9% and 8.25 g kWh^(-1),respectively.The synergistic effect of H_(2)O and O_(2) on the degradation of SF_(6) was similar to that of H_(2)O.When the concentration of H_(2)O and O_(2) was 1%,the system obtained the best rate and energy efficiency of degradation,namely 89.7% and 8.05 g kWh~(-1),respectively.At the same time,different external gases exhibit different capabilities to regulate decomposition products.The addition of H_(2)O can effectively improve the selectivity of S0_(2).Under the synergistic effect of H_(2)O and O_(2),with increase in O_(2) concentration the degradation products gradually transformed into SO_(2)F_(2).From the perspective of harmless treatment of the degradation products of SF_(6),the addition of O_(2) during the SF_(6) degradation process should be avoided.
基金provided by the shale gas resource evaluation methods and exploration technology research project of the National Science and Technology Major Project of China(No.2016ZX05034)Graduate Innovative Engineering Funding Project of China University of Petroleum(East China)(No.YCX2021109)。
文摘It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel underwater discharge stage identification method based on the Strong Tracking Filter(STF) and impedance change characteristics. The time-varying equivalent circuit model of the discharge underwater is established based on the plasma theory analysis of the impedance change characteristics and mechanism of the discharge process. The STF is used to reduce the randomness of the impedance of repeated discharges underwater, and then the universal identification resistance data is obtained. Based on the resistance variation characteristics of the discriminating resistance of the pre-breakdown, main, and oscillatory discharge stages, the threshold values for determining the discharge stage are obtained. These include the threshold values for the resistance variation rate(K) and the moment(t).Experimental and error analysis results demonstrate the efficacy of this innovative method in discharge stage determination, with a maximum mean square deviation of Scrless than 1.761.
基金supported by National Natural Science Foundation of China (Nos. 61971345 and 52107174)。
文摘The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a parallel DC electrode into the standard DBD design. This design improves the body force and induced jet velocity while allowing flexible control of the induced jet angle, overcoming the limitations of discharge extension and uncontrollable direction in traditional DBD plasma actuators. An integrated plasma power supply has been designed specifically for TES-DBD plasma actuators, streamlining the power supply management. The methodology involves designing the circuit topology for the TES-DBD power supply, followed by simulating and validating its operating principles using Multisim software. The operational performance of the power supply is evaluated through a comprehensive analysis of its electrical,thermal, and aerodynamic properties specific to TES-DBD plasma actuation.
基金supported by National Natural Science Foundation of China (No. 12075132)。
文摘The key plasma parameters under different discharge modes, such as heavy-particle and electron temperatures, electron number density, and nonequilibrium volume of plasmas, play important roles in various applications of gas discharge plasmas. In this study, a self-consistent two-dimensional nonequilibrium fluid model coupled with an external circuit model is established to reveal the mechanisms related to the discharge modes, including the normal glow, abnormal glow,arc, and glow-to-arc transition modes, with an atmospheric-pressure direct-current(DC) argon discharge as a model plasma system. The modeling results show that, under different discharge modes, the most significant difference between the preceding four discharge modes lies in the current and energy transfer processes on the cathode side. On one hand, the current to the cathode surface is mainly delivered by the ions coming from the plasma column under the glow discharge mode due to the low temperature of the solid cathode, whereas the thermionic and secondary electrons emitted from the hot cathode surface play a very important role under the arc mode with a higher cathode surface temperature and higher ion flux toward the cathode. On the other hand, the energy transfer channel on the cathode side changes from mainly heating the solid cathode under the glow mode to simultaneously heating both the solid cathode and plasma column under the arc mode with an increase in the discharge current. Consequently, the power density in the cathode sheath(P_c) was used as a key parameter for judging different discharge modes, and the range of(0.28–1.2) × 10^(12) W m^(-3) was determined as a critical window of P_c corresponding to the glow-to-arc-mode transition for the atmospheric-pressure DC argon discharge, which was also verified by comparison with the experimental results in this study and the data in the previous literature.
基金supported by the National Key Research and Development Program of China(No.2020YFC2201004)National Natural Science Foundation of China(No.12172110)。
文摘Ionic liquid electrospray(ILE) in an atmospheric environment is often accompanied by the gas discharge phenomenon. It interferes with the normal operation of the electrospray and the measurement of experimental parameters. In this study, electrospray experiments were conducted on the ionic liquid EMI-BF4. The observations revealed that the operating modes of the ionic liquid depend on the voltage polarity at high voltages. Additionally, a correspondence between the operating mode of ILE and the current signal in the circuit was established. The shape of the liquid cone formed at the needle tip bore a striking resemblance to the plume of corona discharge, suggesting that the motion trajectory of electrons influenced the curvature of the liquid cone. Steamer theory provided a clear explanation for the change in curvature as the voltage increased.
基金supported by the National Natural Science Foundation of China(Grant Nos.:51901153)Shanxi Scholarship Council of China(Grant No.:2019032)+1 种基金Natural Science Foundation of Shanxi(Grant No.:202103021224049)the Science and Technology Major Project of Shanxi Province(Grant No.:20191102008,20191102007)。
文摘The influence of micro-Ca/In alloying on the microstructural charac teristics,electrochemical behaviors and discharge properties of extruded dilute Mg-0.5Bi-0.5Sn-based(wt.%)alloys as anodes for Mg-air batteries are evaluated.The grain size and texture intensity of the Mg-Bi-Sn-based alloys are significantly decreased after the Ca/In alloying,particularly for the In-containing alloy.Note that,in addition to nanoscale Mg_(3)Bi_(2)phase,a new microscale Mg_(2)Bi_(2)Ca phase forms in the Ca-containing alloy.The electrochemical test results demonstrate that Ca/In micro-alloying can enhance the electrochemical activity.Using In to alloy the Mg-Bi-Sn-based alloy is effective in restricting the cathodic hydrogen evolution(CHE)kinetics,leading to a low self-corrosion rate,while severe CHE occurred after Ca alloying.The micro-alloying of Ca/In to Mg-Bi-Sn-based alloy strongly deteriorates the compactness of discharge products film and mitigates the"chunk effect"(CE),hence the cell voltage,anodic efficiency as well as discharge capacity are greatly improved.The In-containing alloy exhibits outstanding discharge performance under the combined effect of the modified microstructure and discharge products,thus making it a potential anode material for primary Mg-air battery.
基金funded by the National Natural Science Foundation of China(Grant No.42201095)the Second Tibetan Plateau Scientific Expedition and Research(STEP)Program(Grant No.2019QZKK0902)the Postdoctoral Special Funding Project of Sichuan Province(Funding No.TB2023028).
文摘For the basins with debris flow development,its channel terrain exhibits a tortuous shape,which significantly restricts the movement of debris flows and leads to severe erosion effects on the concave bank.Therefore,this study aims to analyze the shear force of debris flows within the bend channel.We established the relationship between the shear force and bend curvature through laboratory experiments.Under the long-term erosion by debris flows,the curvature radius of bends gradually increases,however,when this increasing trend reaches an equilibrium state with the intensity of debris flow discharge,there will be no significant change in curvature radius.In general,the activity pattern and discharges of debris flows would remain relatively stable.Hence,we can infer the magnitude of debris flow discharges from the terrain parameters of the bend channel.
基金supported by National Natural Science Foundation of China (Nos. 51937004 and 51977002)sponsored by Beijing Nova Program (No. 20220484153)。
文摘In the space plasma environment, primary discharge may occur on the solar array and evolve into a destructive sustained arc, which threatens the safe operation of the spacecraft. Based on the plasma expansion fluid theory, a new multicomponent plasma expansion model is proposed in this study, which takes into account the effects of ion species, ion number, initial discharge current, and Low Earth Orbit(LEO) plasma environment. The expansion simulation of single-component and multicomponent ions is carried out respectively, and the variations of plasma number density, expansion distance, and speed during the expansion process are obtained.Compared with the experimental results, the evolution of propagation distance and speed is closed and the error is within a reasonable range, which verifies the validity and rationality of the model. The propagation characteristics of the primary discharge on the solar array surface and the influence of the initial value on the maximum propagation distance and the propagation current peaks are investigated. This study can provide important theoretical support for the propagation and evolution of the primary discharge and the key behavior of the transition to secondary discharge on spacecraft solar array.